`a`
Inverse Problems and Imaging (IPI)
 

Some remarks on the small electromagnetic inhomogeneities reconstruction problem
Pages: 1027 - 1046, Issue 6, December 2017

doi:10.3934/ipi.2017047      Abstract        References        Full text (473.4K)           Related Articles

Batoul Abdelaziz - Sorbonne University, Université de Technologie de Compiègne, Laboratoire de Mathématiuqes Appliquées de Compiègne LMAC, 60205 Compiègne Cedex, France (email)
Abdellatif El Badia - Sorbonne University, Université de Technologie de Compiègne, Laboratoire de Mathématiuqes Appliquées de Compiègne LMAC, 60205 Compiègne Cedex, France (email)
Ahmad El Hajj - Sorbonne University, Université de Technologie de Compiègne, Laboratoire de Mathématiuqes Appliquées de Compiègne LMAC, 60205 Compiègne Cedex, France (email)

1 B. Abdelaziz, A. El Badia and A. El Hajj, Direct algorithm for multipolar sources reconstruction, Journal of Mathematical Analysis and Applications, 428 (2015), 306-336.       
2 H. Ammari, M. S Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II, The full Maxwell equations, Journal de Mathématiques Pures et Appliquées, 80 (2001), 769-814.       
3 H. Ammari and H. Kang, A new method for reconstructing electromagnetic inhomogeneities of small volume, Inverse problems, 19 (2003), 63-71.       
4 H. Ammari and H. Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, Journal of Mathematical Analysis and Applications, 296 (2004), 190-208.       
5 H. Ammari, H. Kang, E. Kim, M. Lim and K. Louati, A direct algorithm for ultrasound imaging of internal corrosion, SIAM Journal on Numerical Analysis, 49 (2011), 1177-1193.       
6 M. Brühl, M. Hanke and M. S Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities, Numerische Mathematik, 93 (2003), 635-654.       
7 D. J. Cedio-Fengya, S. Moskow and M. S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems, 14 (1998), 553-595.       
8 M. Cheney, D. Isaacson and J. C Newell, Electrical impedance tomography, SIAM Review, 41 (1999), 85-101.       
9 D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.       
10 A. El Badia and T. Ha-Duong, An inverse source problem in potential analysis, Inverse Problems, 16 (2000), 651-663.       
11 A. El Badia and T. Nara, Inverse dipole source problem for time-harmonic Maxwell equations: algebraic algorithm and Hölder stability, Inverse Problems, 29 (2013), 015007, 19pp.       
12 A. El Badia and A. El Hajj, Stability estimates for an inverse source problem of Helmholtz's equation from single Cauchy data at a fixed frequency, Inverse Problems, 29 (2013), 125008, 20pp.       
13 A. Friedman and M.Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Archive for Rational Mechanics and Analysis, 105 (1989), 299-326.       
14 P. C. Hansen, Rank-deficient and Discrete Ill-Posed Problems, Philadelphia, PA, 1998.       
15 H. Kang and H. Lee, Identification of simple poles via boundary measurements and an application of EIT, Inverse Problems, 20 (2004), 1853-1863.       
16 A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040.       
17 O. Kwon, J. K. Seo and J. R. Yoon, A real time algorithm for the location search of discontinuous conductivities with one measurement, Communications on Pure and Applied Mathematics, 55 (2002), 1-29.       
18 T. D. Mast, A. I. Nachman and R. C. Waag, Focusing and imaging using eigenfunctions of the scattering operator, The Journal of the Acoustical Society of America, 102 (1997), 715-725.
19 M. S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, ESAIM: Mathematical Modelling and Numerical Analysis, 34 (2000), 723-748.       
20 D. Volkov, An Inverse Problem for the Time Harmonic Maxwell's Equations, Ph.D thesis, Rutgers The State University of New Jersey - New Brunswick, 2001.       

Go to top