Inverse Problems and Imaging (IPI)

Analysis of a variational model for motion compensated inpainting
Pages: 997 - 1025, Issue 6, December 2017

doi:10.3934/ipi.2017046      Abstract        References        Full text (493.6K)           Related Articles

Riccardo March - Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Roma, Italy (email)
Giuseppe Riey - Dipartimento di Matematica e Informatica, Universitá della Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy (email)

1 L. Ambrosio, Variational problems in SBV and image segmentation, Acta Appl. Math., 17 (1989), 1-40.       
2 L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.       
3 L. Ambrosio and D. Pallara, Integral representation of relaxed functionals on $BV(\mathbbR^n,\mathbbR^k)$ and polyhedral approximation, Indiana Univ. Math. J., 42 (1993), 295-321.       
4 G. Aubert, R. Deriche and P. Kornprobst, Computing optimal flow via variational techniques, SIAM J. App. Math., 60 (2000), 156-182.       
5 G. Aubert and P. Kornprobst, A mathematical study of the relaxed optical flow problem in the space $BV(\Omega)$, SIAM J. Math. Anal., 30 (1999), 1282-1308.       
6 G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd Edition, Springer, New York, 2006.       
7 M. Bertalmio, A. Bertozzi and G. Sapiro, Navier-Stokes, fluid-dynamics and image and video inpainting, in Proceedings of Computer Vision and Pattern Recognition, 2001, 355-362.
8 K. Bredies, K. Kunish and T. Pock, Total generalized variation, SIAM J. Imaging Sciences, 3 (2010), 492-526.       
9 K. Bredies, K. Kunish and T. Valkonen, Properties of $L^1-TGV^2$: The one-dimensional case, J. Math. Anal. Appl., 398 (2013), 438-454.       
10 T. Brox, A. Bruhn, N. Papenberg and J. Weickert, High accuracy optical flow estimation based on a theory for warping, Proceedings of the 8th European Conference on Computer Vision (eds. T. Pajdla and J. Matas), Springer, 3024 (2004), 25-36.
11 A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications, IMA J. Numer. Anal., 29 (2009), 827-855.       
12 G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Research Notes in Mathematics Series, Vol. 207, Longman Scientific & Technical, UK, 1989.       
13 J. P. Cocquerez, L. Chanas and J. Blanc-Talon, Simultaneous inpainting and motion estimation of highly degraded video-sequences, in Scandinavian Conference on Image Analysis, LNCS, Springer-Verlag, 2749 (2003), 523-530.
14 S. Conti, J. Ginster and M. Rumpf, A BV functional and its relaxation for joint motion estimation and image sequence recovery, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), 1463-1487.       
15 A. Corbo Esposito and R. De Arcangelis, Comparison results for some types of relaxation of variational integral functionals, Ann. Mat. Pura Appl., 164 (1993), 155-193.       
16 F. Demengel, Fonctions á hessien borné, Annales de l'Institut Fourier, 34 (1984), 155-190.       
17 F. Demengel and R. Temam, Convex functions of a measure and applications, Indiana University Mathematics Journal, 33 (1984), 673-709.       
18 M. Giaquinta, G. Modica and J. Soucek, Functionals with linear growth in the calculus of variations. I, Commentationes Matematicae Universitatis Carolinae, 20 (1979), 143-156.       
19 M. Giaquinta, G. Modica and J. Soucek, Functionals with linear growth in the calculus of variations. II, Commentationes Matematicae Universitatis Carolinae, 20 (1979), 157-172.       
20 E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.       
21 C. Goffman and J. Serrin, Sublinear functions of measures and variationals integrals, Duke Math. J., 31 (1964), 159-178.       
22 B. K. P. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), 185-203.
23 S. H. Keller, F. Lauze and M. Nielsen, Deintarlacing using variational methods, IEEE Trans. Image Proc., 17 (2008), 2015-2028.       
24 S. H. Keller, F. Lauze and M. Nielsen, Video super-resolution using simultaneous motion and intensity calculations, IEEE Trans. Image Proc., 20 (2011), 1870-1884.       
25 F. Lauze and M. Nielsen, A Variational algorithm for motion compensated inpainting, in British Machine Vision Conference (eds. S. Barman, A. Hoppe and T. Ellis editors), BMVA, 2 (2004), 777-787.
26 Y. G. Reshetnyak, Weak convergence of completely additive vector functions on a set, (Russian) Sibirski Mat. Zh., 9 (1968), 1386-1394; translation in Siberian Math. J., 9 (1968), 1039-1045.       
27 S. Uras, F. Girosi, A. Verri and V. Torre, A computational approach to motion perception, Biol. Cybern., 60 (1988), 79-87.
28 W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.       

Go to top