`a`
Journal of Industrial and Management Optimization (JIMO)
 

A variational inequality approach for constrained multifacility Weber problem under gauge
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017091      Abstract        References        Full text (463.9K)      

Jianlin Jiang - Department of Mathematics, College of Science, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Qinhuai District, Nanjing 210016, China (email)
Shun Zhang - Department of Mathematics, College of Science, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Qinhuai District, Nanjing 210016, China (email)
Su Zhang - Department of Financial Management, Business School, Nankai University, 94 Weijin Road, Tianjin, 300071, China (email)
Jie Wen - Department of Mathematics, College of Science, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Qinhuai District, Nanjing 210016, China (email)

1 R. S. Burachik and A. N. Iusem, A generalized proximal point algorithm for the variational inequality problem in a Hilbert space, SIAM J. Optim., 8 (1998), 197-216.       
2 E. Carrizosa, E. Conde, M. Munõand J. Puerto, Simpson points in planar problems with locational constraints - the polyhedral gauge case, Math. Oper. Res., 22 (1997), 297-300.       
3 M. Cera, J. A. Mesa, F. A. Ortega and F. Plastria, Locating a central hunter on the plane, J. Optim. Theory Appl., 136 (2008), 155-166.       
4 F. Daneshzand and R. Shoeleh, Multifacility location problem, in Facility Location: Concepts, Models, Algorithms and Case Studies, R.Z. Farahani and M. Hekmatfar (eds.), Springer, Berlin, 2009, 69-92.
5 Z. Drezner, Facility Location: A Survey of Applications and Methods, Springer, New York, 1995.       
6 Z. Drezner and H. W. Hamacher, Facility Location: Applications and Theory, Springer-Verlag, Berlin, 2002.       
7 R. Durier, On Pareto optima, the Fermat-Weber problem and polyhedral gauges, Math. Program., 47 (1990), 65-79.       
8 B. C. Eaves, On the basic theorem of complememtarity, Math. Program., 1 (1971), 68-75.       
9 J. W. Eyster, J. A. White and W. W. Wierwille, On solving multifacility location problems using a hyperboloid approximation procedure, AIIE Trans., 5 (1973), 275-280.       
10 F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.       
11 M. C. Ferris and C. Kanzow, Engineering and economic applications of complementarity problems, SIAM Review, 39 (1997), 669-713.       
12 B. S. He, A new method for a class of linear variational inequalities, Math. Program., 66 (1994), 137-144.       
13 B. S. He, A modified projection and contraction method for a class of linear complementarity problems, J. Comput. Math., 14 (1996), 54-63.       
14 B. S. He, X. M. Yuan and W. X. Zhang, A customized proximal point algorithm for convex minimization with linear constraints, Comput. Optim. Appl., 56 (2013), 559-572.       
15 I. N. Katz and S. R. Vogl, A Weiszfeld algorithm for the solution of an asymmetric extension of the generalized Fermat location problem, Comput. Math. Appl., 59 (2010), 399-410.       
16 R. F. Love and J. G. Morris, Mathematical models of road travel distances, Manag. Sci., 25 (1979), 130-139.
17 R. F. Love and J. G. Morris, On estimating road distances by mathematical functions, Euro. J. Oper. Res., 36 (1988), 251-253.
18 R. F. Love, J. G. Morris and G. O. Wesolowsky, Facilities Location: Models and Methods, North-Holland, Amsterdam, 1988.       
19 B. Martinet, Regularision d'inéquations variationnelles par approximations successive, Revue Francaise d'Automatique et Informatique Recherche Opérationnelle, 4 (1970), 154-158.       
20 W. Miehle, Link length minimization in networks, Oper. Res., 6 (1958), 232-243.       
21 H. Minkowski, Theorie der konvexen Körper, Gesammelte Abhandlungen, Teubner, Berlin, 1911.
22 S. Nickel, Restricted center problems under polyhedral gauges, Euro. J. Oper. Res., 104 (1998), 343-357.
23 L. M. Ostresh, The multifacility location problem: Applications and descent theorems, J. Regional Sci., 17 (1977), 409-419.
24 F. Plastria, Asymmetric distances, semidirected networks and majority in Fermat-Weber problems, Ann. Oper. Res., 167 (2009), 121-155.       
25 F. Plastria, The Weiszfeld algorithm: proof, amendments, and extensions, in Foundations of Location Analysis, H.A. Eiselt and V. Marianov (eds.), Springer, US, 155 (2011), 357-389.
26 J. B. Rosen and G. L. Xue, On the convergence of Miehle's algorithm for the Euclidean multifacility location problem, Oper. Res., 40 (1992), 188-191.
27 J. B. Rosen and G. L. Xue, On the convergence of a hyperboloid approximation procedure for the perturbed Euclidean multifacility location problem, Oper. Res., 41 (1993), 1164-1171.       
28 M. V. Solodov and P. Tseng, Modified projection-type methods for monotone variational inequalities, SIAM J. Control Optim., 34 (1996), 1814-1830.       
29 H. Uzawa, Iterative methods for concave programming, in Studies in Linear and Nonlinear Programming, K.J. Arrow, L. Hurwicz and H. Uzawa (eds.), Stanford University Press, Stanford, 1958, 154-165.
30 J. E. Ward and R. E. Wendell, A new norm for measuring distance which yields linear location problems, Oper. Res., 28 (1980), 836-844.
31 J. E. Ward and R. E. Wendell, Using block norms for location modelling, Oper. Res., 33 (1985), 1074-1090.       
32 E. Weiszfeld, Sur le point pour lequel la somme des distances de $n$ points donnés est minimum, Tohoku Math. J., 43 (1937), 355-386.
33 C. Witzgall, Optimal location of a central facility, mathematical models and concepts, Report 8388, National Bureau of Standards, Washington DC, US, 1964.

Go to top