`a`
Journal of Industrial and Management Optimization (JIMO)
 

Second-order optimality conditions for cone constrained multi-objective optimization
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017089      Abstract        References        Full text (406.7K)      

Liwei Zhang - School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China (email)
Jihong Zhang - School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China (email)
Yule Zhang - School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China (email)

1 B. Aghezzaf and M. Hachimi, Second-order optimality conditions in multiobjective optimization problems, Journal of Optimization Theory and Applications, 102 (1999), 37-50.       
2 H. P. Benson, Existence of efficient solutions for vector maximization problems, Journal of Optimization Theory and Applications, 26 (1978), 569-580.       
3 G. Bigi, On sufficient second order optimality conditions in multiobjective optimization, Math. Meth. Oper. Res., 63 (2006), 77-85.       
4 G. Bigi and M. Castellani, Second-order optimality conditions for differentiable multiobjective problems, BAIRO Operations Research, 34 (2000), 411-426.       
5 J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.       
6 J. F. Bonnas and C. H.Ramírez, Perturbation anylsis of second-order cone programming problems, Mathematical Programming, 104 (2005), 205-227.       
7 H. Kawasaki, Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualification, Journal of Optimization Theory and Applications, 57 (1988), 253-264.       
8 J. G. Lin, Maximal vectors and multiobjective optimization, Journal of Optimization Theory and Applications, 18 (1976), 41-64.       
9 T. Maeda, Constraint qualification in multiobjective optimization problems: Differentiable case, Journal of Optimization Theory and Applications, 80 (1994), 483-500.       
10 A. A. K. Majumdar, Optimality conditions in differentiable multiobjective programming, Journal of Optimization Theory and Applications, 92 (1997), 419-427.       
11 O. L. Mangasarian, Nonlinear Programming, McGraw Hill, New York, 1969.       
12 C. Singh, Optimality conditions in multiobjective differentiable programming, Journal of Optimization Theory and Applications, 53 (1987), 115-123.       
13 S. Wang, Second-order necessary and sufficient conditions in multiobjective programming, Numerical Functional Analysis and Optimization, 12 (1991), 237-252.       
14 R. E. Wendell and D. N. Lee, Efficiency in multiple objective optimization problems, Mathematical Programming, 12 (1977), 406-414.       

Go to top