`a`
Journal of Industrial and Management Optimization (JIMO)
 

Optimal production schedule in a single-supplier multi-manufacturer supply chain involving time delays in both levels
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017080      Abstract        References        Full text (499.4K)      

Kar Hung Wong - School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa (email)
Y.C.E. Lee - Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China (email)
Heung Wing Joseph Lee - Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China (email)
Chi Kin Chan - Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China (email)

1 S. Axsater, Control theory concepts in production and inventory control, International Journal of Systems Science, 16 (1985), 161-169.       
2 A. Bradshaw and D. Daintith, Synthesis of control policies for cascaded production inventory systems, International Journal of Systems Science, 7 (1976), 1053-1070.
3 C. K. Chan, H. W. J. Lee and K. H. Wong, Optimal feedback production for a two-Level supply chain, International Journal of Production Economics, 113 (2008), 619-625.
4 Y. H. Dai and K. Schittkowski, A sequential quadratic programming algorithm with non-monotone line search, Pacific Journal of Optimization, 4 (2008), 335-351.       
5 J. Dejonckheere, S. M. Disney, M. R. Lambrecht and D. R. Towill, Measuring and avoiding the bullwhip effect: A control theoretic approach, European Journal of Operational Research, 147 (2003), 567-590.
6 S. M. Disney and D. R. Towill, On the bullwhip and inventory variance produced by an ordering policy, Omega, 31 (2003), 157-167.
7 J. W. Forrester, Industrial Dynamics, Cambridge MA: MIT Press, 1961.       
8 K. Kaji and K. H. Wong, Nonlinearly constrained time-delayed optimal control problems, Journal of Optimization Theory and Applications, 82 (1994), 295-313.       
9 K. Kogan, Y. Y. Leu and J. R. Perkins, Parallel-machine, multiple-product-type, continuous-time Scheduling: Decomposable cases, IEE Transactions, 34 (2002), 11-22.
10 M. Miranbeigi, A. Jalali and A. Miranbeigi, A constrained inventory level optimal control on supply chain management System, International Journal of Innovation, 1 (2010), 69-74.
11 M. Miranbeigi, B. Moshiri, A. Rahimi-Kian and J. Razmi, Demand satisfaction in supply chain management System using a full online optimal control method, International Journal of Advanced Manufacturing Technology, 77 (2015), 1401-1417.
12 B. Porter and A. Bradshaw, Modal control of production inventory systems using piecewise constant control policies, International Journal of Systems Science, 7 (1976), 1053-1070.
13 B. Porter and F. Taylor, Modal control of production inventory systems, International Journal of Systems Science, 3 (1972), 325-331.
14 C. E. Riddalls and S. Bennett, Modelling the dynamics of supply chains, International Journal of Systems Science, 31 (2000), 969-976.
15 C. E. Riddalls and S. Bennett, The stability of supply chains, International Journal of Production Research, 40 (2000), 459-475.
16 K. Schittkowski, A robust implementation of a sequential quadratic programming algorithm with successive error restoration, Optimization Letters, 5 (2011), 283-296.       
17 H. A. Simon, On the application of servomechanism theory in the study of production control, Econometrica, 20 (1952), 247-268.       
18 K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, England Longman Scientific and Technical, 1991.       
19 K. L. Teo, K. H. Wong and D. J. Clements, Optimal control computation for linear time-lag systems with linear terminal constraints, Journal of Optimization Theory and Applications, 44 (1984), 509-526.       
20 K. H. Wong, C. K. Chan and H. W. J. Lee, Optimal feedback production for a single-echelon supply chain, Journal of Discrete and Continuous Dynamical Systems, Series B, 6 (2006), 1431-1444.       
21 K. H. Wong, D. J. Clements and K. L. Teo, Optimal control computation for nonlinear systems, Journal of Optimization Theory and Applications, 47 (1985), 91-107.       
22 K. H. Wong, L. S. Jennings and F. Benyah, Control parametrization method for free planning time optimal control problems with time-delayed arguments, Journal of Nonlinear Analysis, Series A, 47 (2001), 5679-5689.       
23 F. Yang, K. L. Teo, R. Loxton, V. Rehbock, L. Bin, Y. Changjun and L. S. Jennings, Visual Miser: an efficient user-friendly visual problem for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.       
24 C. Yu, Q. Lin, R. Loxton, K. L. Teo and G. Wang, A hybrid time-scaling transformation for time-delay optimal control problems, Journal of Optimization Theory and Applications, 169 (2016), 876-901.       
25 H. Zaher and T. T. Zaki, Optimal control theory to solve production inventory system in supply chain management, Journal of Mathematics Research, 6 (2014), 109-117.

Go to top