`a`
Journal of Industrial and Management Optimization (JIMO)
 

Linearized block-wise alternating direction method of multipliers for multiple-block convex programming
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017078      Abstract        References        Full text (2327.9K)      

Zhongming Wu - School of Economics and Management, Southeast University, Nanjing 210096, China (email)
Xingju Cai - School of Mathematical Sciences, Jiangsu Key Labratory for NSLSCS, Nanjing Normal University, Nanjing 210023, China (email)
Deren Han - School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province, Nanjing Normal University, Nanjing 210023, China (email)

1 X. J. Cai, D. R. Han and X. M. Yuan, The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex, Comput. Optim. Appl., 66 (2017), 39-73.       
2 A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20 (2004), 89-97.       
3 R. H. Chan, M. Tao and X. M. Yuan, Linearized alternating direction method of multipliers for constrained linear least-squares problem, E. Asia J. Appl. Math., 2 (2012), 326-341.       
4 C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., 155 (2016), 57-79.       
5 W. Deng, M. J. Lai, Z. M. Peng and W. T. Yin, Parallel multi-block ADMM with o(1/t) convergence, J. Sci. Comput., 71 (2017), 712-736.       
6 D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), 17-40.
7 R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 9 (1975), 41-76.       
8 T. Goldstein and S. Osher, The split Bregman method for $L_1$-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.       
9 D. R. Han, H. J. He and L. L. Xu, A proximal parallel splitting method for minimizing sum of convex functions with linear constraints, J Comput. Appl. Math., 256 (2014), 36-51.       
10 D. R. Han and X. M. Yuan, A note on the alternating direction method of multipliers, J. Optim. Theory Appl., 155 (2012), 227-238.       
11 D. R. Han, X. M. Yuan and W. X. Zhang, An augmented lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Math. Comput., 83 (2014), 2263-2291.       
12 P. T. Harker and J. S. Pang, A damped-newton method for the linear complementarity problem, Lect. Appl. Math., 26 (1990), 265-284.       
13 B. S. He, L. S. Hou and X. M. Yuan, On full jacobian decompositon of the augmented lagrangian method for separable convex programming, SIAM J. Optim., 25 (2015), 2274-2312.       
14 B. S. He, M. Tao and X. M. Yuan, Alternating direction method with gaussian back substitution for separable convex programming, SIAM J. Optim., 22 (2012), 313-340.       
15 B. S. He, M. Tao and X. M. Yuan, Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming, Math. Oper. Res., (2017).
16 B. S. He, M. Tao and X. M. Yuan, A splitting method for separable convex programming, IMA J. Numer. Anal., 35 (2015), 394-426.       
17 B. S. He, M. H. Xu and X. M. Yuan, Solving large-scale least squares covariance matrix problems by alternating direction methods, SIAM J. Matrix Anal. A., 32 (2011), 136-152.       
18 B. S. He and X. M. Yuan, Block-wise alternating direction method of multipliers for multiple-block convex programming and beyond, SMAI J Comput. Math., 1 (2015), 145-174.       
19 H. J. He, D. R. Han and Z. B. Li, Some projection methods with the BB step sizes for variational inequalities, J. Comput. Appl. Math., 236 (2012), 2590-2604.       
20 M. Y. Hong and Z. Q. Luo, On the linear convergence of the alternating direction method of multipliers, Math. Program., 162 (2017), 165-199.       
21 M. Li, D. F. Sun and K. C. Toh, A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block, Asia Pac. J. Oper. Res., 32 (2015), 1550024, 19pp.       
22 T. Y. Lin, S. Q. Ma and S. Z. Zhang, On the sublinear convergence rate of multi-block ADMM, J. Oper. Res. Soc. China, 3 (2015), 251-274.       
23 Z. C. Lin, R. S. Liu and Z. X. Su, Linearized alternating direction method with adaptive penalty for low-rank representation, Adv. Neural. Inform. Pr., (2011), 612-620.
24 S. Q. Ma, Alternating proximal gradient method for convex minimization, J. Sci. Comput., 68 (2016), 546-572.       
25 J. Nocedal and S. Wright, Numerical Optimization, Springer Science & Business Media, 2006.       
26 Y. Y. Ouyang, Y. M. Chen, G. H. Lan and E. P. Pasiliao Jr, An accelerated linearized alternating direction method of multipliers, SIAM J. Imaging Sci., 8 (2015), 644-681.       
27 X. Ren and Z. C. Lin, Linearized alternating direction method with adaptive penalty and warm starts for fast solving transform invariant low-rank textures, Int. J. Comput. Vis., 104 (2013), 1-14.       
28 H. Schaeffer and S. Osher, A low patch-rank interpretation of texture, SIAM J. Imaging Sci., 6 (2013), 226-262.       
29 D. F. Sun, K. C. Toh and L. Yang, A convergent 3-block semi-proximal alternating direction method of multipliers for conic programming with $4$-type of constraints, SIAM J. Optim., 25 (2015), 882-915.       
30 Y. L. Wang, J. F. Yang, W. T. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.       

Go to top