`a`
Journal of Industrial and Management Optimization (JIMO)
 

Parameter identification techniques applied to an environmental pollution model
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017077      Abstract        References        Full text (407.7K)      

Yuepeng Wang - School of Mathematics and Statistics, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, China (email)
Yue Cheng - School of Mathematics and Statistics, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, China (email)
I. Michael Navon - Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, United States (email)
Yuanhong Guan - School of Mathematics and Statistics, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, China (email)

1 Q. Chai, R. Loxton, K. L. Teo and C. Yang, A unified parameter identification method for nonlinear time delay systems, Journal of Industrial and Management Optimization, 9 (2013), 471-486.       
2 T. Chen and C. Xu, Computational optimal control of the Saint-Venant PDE model using the time-scaling technique, Asia-Pacific Journal of Chemical Engineering, 11 (2016), 70-80.
3 J. Du, I. M. Navon, J. Zhu, F. Fang and A. K. Alekseev, Reduced order modeling based on POD of a parabolized Navier-Stokes equations model II: trust region POD 4DVAR data assimilation, Comput. Math. Appl., 65 (2013), 380-394.       
4 D. M. Dunlavy, T. G. Kolda and E. Acar, Poblano v1.0: A Matlab Toolbox for Gradient-Based Optimization, SANDIA Report, 2010.
5 H. W. Engl, Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates, J. Optim. Theory Appl., 52 (1987), 209-215.       
6 C. Farhat, R. Tezaur and R. Djellouli, On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method, Inverse Problems, 18 (2002), 1229-1246.       
7 R. Giering, Tangent linear and adjoint biogeochemical models, in Inverse Methods in Global Biogeochemical Cycles (eds. P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R. G. Prinn and D. E. Hartley), American Geophysical Union: Washington DC, 2000, 33-47.
8 P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, 1981.       
9 M. Gunzburger, Adjoint equation-based methods for control problems in incompressible, viscous flows, Flow Turbulence Combust., 65 (2000), 249-272.       
10 P. C. Hansen, Rank-Deficient and Discrete Ill-posed Problems, Practical optimization, SIAM, 1998.       
11 M. J. Hossen, I. M. Navon and D. N. Daescu, Effect of random perturbations on adaptive observation techniques, International Journal For Numerical Methods in Fluids, 69 (2012), 110-123.
12 S. X. Huang, W. Han and R. S. Wu, Theoretical analysis and numerical experiments of variational assimilation for one-dimensional ocean temperature model with techniques in inverse problems, Science in China D, 47 (2004), 630-638.
13 D. Krawczyk-stando and M. Rudnicki, Regularization parameter selection in discrete ill-posed problems-The use of the $U$-curve, Int. J. Appl. Math. Comput. Sci., 17 (2007), 157-164.       
14 Q. Lin, R. Loxton, C. Xu and K. L. Teo, Parameter estimation for nonlinear time-delay systems with noisy output measurements, Automatica, 60 (2015), 48-56.       
15 W. J. Liu, G. Li and L. H. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, Journal of Function Spaces, 2 (2014), article ID 284809, 21pp.       
16 R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to state-delay identification, IEEE Transactions on Automatic Control, 55 (2010), 2113-2119.       
17 B. Malengier and R. V. Keer, Parameter estimation in convection dominated nonlinear convection-diffusion problems by the relaxation method and the adjoint equation, Journal of Computational and Applied Mathematics, 215 (2008), 477-483.       
18 I. M. Navon, Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynam. Atmos. Oceans, 27 (1998), 55-79.
19 I. M. Navon and D. M. Legler, Conjugate-gradient methods for large-scale minimization in meteorology, Monthly Weather Review, 115 (1987), 1479-1502.
20 I. M. Navon, X. Zou, J. Derber and J. Sela, Variational data assimilation with an adiabatic version of the nmc spectral model, Monthly Weather Review, 120 (1992), 1433-1446.
21 T. Nieminen, J. Kangas and L. Kettunen, Use of Tikhonov regularization to improve the accuracy of position estimates in inertial navigation, International Journal of Navigation and Observation, 2011 (2011), 1-10.
22 J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 1999.       
23 D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3 (1955), 28-41.       
24 B. Protas, T. R. Bewley and G. Hagen, A computational framework for the regularization of adjoint analysis in multiscale PDE systems, Journal of Computational Physics, 195 (2004), 49-89.       
25 R. B. Storch, L. C. G. Pimentel and H. R. B. Orlande, Identification of atmospheric boundary layer parameters by inverse problem, Atmospheric Environment, 41 (2007), 1417-1425.
26 Y. P. Wang, I. M. Navon, X. Y. Wang and Y. Cheng, 2D Burgers equation with large Reynolds number using POD/DEIM and calibration, International Journal For Numerical Methods in Fluids, 82 (2016), 909-931.       
27 Y. P. Wang and S. L. Tao, Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem, Applied Mathematics and Computation, 218 (2011), 4475-4482.       
28 Y. W. Wen and A. M. Yip, Adaptive Parameter Selection for Total Variation Image Deconvolution, Numer. Math. Theor. Meth. Appl., 2 (2009), 427-438.
29 J. C.-F. Wong and J.-L. Xie, Inverse determination of a heat source from natural convection in a porous cavity, Computers and Fluids, 52 (2011), 1-14.       
30 Y. Zhu and I. M. Navon, Impact of parameter estimation on the performance of the FSU global spectral model using its full-physics adjoint, Monthly Weather Review, 127 (1999), 1497-1517.
31 X. Zou, I. M. Navon and F. X. LeDimet, An optimal nudging data assimilation scheme using parameter estimation, Quarterly Journal of the Royal Meteorological Society, 118 (1992), 1163-1186.

Go to top