`a`
Journal of Industrial and Management Optimization (JIMO)
 

Least absolute deviations learning of multiple tasks
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017071      Abstract        References        Full text (509.6K)      

Wei Xue - School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Wensheng Zhang - School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Gaohang Yu - Jiangxi Key Laboratory of Numerical Simulation Technology, School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, 341000, China (email)

1 A. Argyriou, T. Evgeniou and M. Pontil, Convex multi-task feature learning, Mach. Learn., 73 (2008), 243-272.
2 Y. Bai and M. Tang, Object tracking via robust multitask sparse representation, IEEE Signal Process. Lett., 21 (2014), 909-913.
3 B. Bakker and T. Heskes, Task clustering and gating for Bayesian multitask learning, J. Mach. Learn. Res., 4 (2003), 83-99.
4 S. Ben-David and R. Schuller, Exploiting task relatedness for multiple task learning, in Proc. Int. Conf. Learn. Theory, 2777 (2003), 567-580.
5 K. P. Bennett, J. Hu, X. Ji, G. Kunapuli and J.-S. Pang, Model selection via bilevel optimization, in Proc. IEEE Int. Joint Conf. Neural Netw., (2006), 1922-1929.
6 X. Chen, W. Pan, J. T. Kwok and J. G. Carbonell, Accelerated gradient method for multi-task sparse learning problem, in Proc. IEEE Int. Conf. Data Min., (2009), 746-751.
7 T. Evgeniou, C. A. Micchelli and M. Pontil, Learning multiple tasks with kernel methods, J. Mach. Learn. Res., 6 (2005), 615-637.       
8 D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element approximations, Comp. Math. Appl., 2 (1976), 17-40.
9 P. Gong, J. Ye and C. Zhang, Multi-stage multi-task feature learning, in Adv. Neural Inf. Process. Syst., (2012), 1988-1996.
10 P. Gong, J. Ye and C. Zhang, Robust multi-task feature learning, J. Mach. Learn. Res., 14 (2013), 2979-3010.       
11 B. He, L. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, Math. Program., 92 (2002), 103-118.       
12 Y. Hu, Z. Wei and G. Yuan, Inexact accelerated proximal gradient algorithms for matrix $l_{2,1}$-norm minimization problem in multi-task feature learning, Stat., Optim. Inf. Comput., 2 (2014), 352-367.       
13 M. Kowalski, M. Szafranski and L. Ralaivola, Multiple indefinite kernel learning with mixed norm regularization, in Proc. Int. Conf. Mach. Learn., (2009), 545-552.
14 J. Liu, S. Ji and J. Ye, Multi-task feature learning via efficient $l_{2,1}$-norm minimization, in Proc. Uncertainity Artif. Intell., (2009), 339-348.
15 J. Liu, S. Ji and J. Ye, SLEP: Sparse learning with efficient projections, Available from: http://yelab.net/software/SLEP.
16 Y. Lu, Y.-E. Ge and L-W. Zhang, An alternating direction method for solving a class of inverse semidefinite quadratic programming problems, J. Ind. Manag. Optim., 12 (2016), 317-336.       
17 F. Nie, H. Huang, X. Cai and C. Ding, Efficient and robust feature selection via joint $l_{2,1}$-norms minimization, in Adv. Neural Inf. Process. Syst., (2010), 1813-1821.
18 G. Obozinski, B. Taskar and M. I. Jordan, Joint covariate selection and joint subspace selection for multiple classification problems, Statist. Comput., 20 (2010), 231-252.       
19 A. Quattoni, X. Carreras, M. Collins and T. Darrell, An efficient projection for $l_{1,\infty}$ regularization, in Proc. Int. Conf. Mach. Learn., (2009), 857-864.
20 Z. Shen, Z. Geng and J. Yang, Image reconstruction from incomplete convolution data via total variation regularization, Stat., Optim. Inf. Comput., 3 (2015), 1-14.       
21 S. Xiang, F. Nie, G. Meng, C. Pan and C. Zhang, Discriminative least squares regression for multiclass classification and feature selection, IEEE Trans. Neural Netw. Learn. Syst., 23 (2012), 1738-1754.
22 Y. Xiao, S.-Y. Wu and B. He, A proximal alternating direction method for $l_{2,1}$-norm least squares problem in multi-task feature learning, J. Ind. Manag. Optim., 8 (2012), 1057-1069.       
23 T. Xiong, J. Bi, B. Rao and V. Cherkassky, Probabilistic joint feature selection for multi-task learning, in Proc. SIAM Int. Conf. Data Min., (2007), 332-342.
24 W. Xue and W. Zhang, Learning a coupled linearized method in online setting, IEEE Trans. Neural Netw. Learn. Syst., 28 (2017), 438-450.       
25 W. Xue and W. Zhang, Online weighted multi-task feature selection, in Proc. Int. Conf. Neural Inf. Process., (2016), 195-203.
26 H. Yang, M. R. Lyu and I. King, Efficient online learning for multitask feature selection, ACM Trans. Knowl. Discov. Data, 7 (2013), 1-27.
27 L. Yang, T. K. Pong and X. Chen, Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction, SIAM J. Imaging Sci., 10 (2017), 74-110, arXiv:1506.07029v4.       
28 G. Yu, W. Xue and Y. Zhou, A nonmonotone adaptive projected gradient method for primal-dual total variation image restoration, Signal Process., 103 (2014), 242-249.

Go to top