`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

A space-time discontinuous Galerkin spectral element method for the Stefan problem
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017216      Abstract        References        Full text (935.4K)      

Chaoxu Pei - Department of Mathematics, Florida State University, Tallahassee, FL, 32306, United States (email)
Mark Sussman - Department of Mathematics, Florida State University, Tallahassee, FL, 32306, United States (email)
M. Yousuff Hussaini - Department of Mathematics, Florida State University, Tallahassee, FL, 32306, United States (email)

1 N. Al-Rawahi and G. Tryggvason, Numerical simulation of dendritic solidification with convection: Two-dimensional geometry, J. Comput. Phys., 180 (2002), 471-496.
2 N. Al-Rawahi and G. Tryggvason, Numerical simulation of dendritic solidification with convection: Three-dimensional flow, J. Comput. Phys., 194 (2004), 677-696.
3 V. Alexiades and A. D. Solomon, Mathematical Modelling of Melting and Freezing Processes, Hemisphere Publishing Corporation, Washington, 1981.
4 E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users' Guide, 3rd edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
5 T. D. Aslam, A partial differential equation approach to multidimensional extrapolation, J. Comput. Phys., 193 (2004), 349-355.       
6 D. C. Assêncio and J. M. Teran, A second order virtual node algorithm for Stokes flow problems with interfacial forces, discontinuous material properties and irregular domains, J. Comput. Phys., 250 (2013), 77-105.       
7 M. Azaïez, F. Jelassi, M. Mint Brahim and J. Shen, Two-phase Stefan problem with smoothed enthalpy, Commun. Math. Sci., 14 (2016), 1625-1641.       
8 J. Bedrossian, J. H. von Brecht, S. Zhu, E. Sifakis and J. M. Teran, A second order virtual node method for elliptic problems with interfaces and irregular domains, J. Comput. Phys., 229 (2010), 6405-6426.       
9 M. Benzi and M. A. Olshanskii, An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput., 28 (2006), 2095-2113.       
10 C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Berlin, Springer, 2006.       
11 S. Chen, B. Merriman, S. Osher and P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys., 135 (1997), 8-29.       
12 J. Chessa, P. Smolinski and T. Belytschko, The extended finite element method (XFEM) for solidification problems, Int. J. Number. Meth. Eng., 53 (2002), 1959-1977.       
13 B. Bernardo Cockburn, G. Karniadakis and C.-W. Shu (eds.), Discontinuous Galerkin Methods: Theory, Computation, and Applications, Lecture notes in computational science and engineering, Springer, Berlin, New York, 2000.
14 B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-285.       
15 B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.       
16 H. Coxeter, Regular Polytopes, Dover Publications, Inc., New York, 1973.       
17 A. Criscione, D. Kintea, Ž. Tuković, S. Jakirlić, I. Roisman and C. Tropea, Crystallization of supercooled water: A level-set-based modeling of the dendrite tip velocity, Int. J. Heat Mass Transfer, 66 (2013), 830-837.
18 M. Farid, The moving boundary problems from melting and freezing to drying and frying of food, Chemical Engineering and Processing: Process Intensification, 41 (2002), 1-10.
19 R. P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A Non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method), J. Comput. Phys., 152 (1999), 457-492.       
20 W. L. George and J. A. Warren, A parallel 3D dendritic growth simulator using the phase-field method, J. Comput. Phys., 177 (2002), 264-283.
21 F. Gibou and R. Fedkiw, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys., 202 (2005), 577-601.       
22 F. Gibou, R. Fedkiw, R. Caflisch and S. Osher, A level set approach for the numerical simulation of dendritic growth, J. Sci. Comput., 19 (2003), 183-199.       
23 F. Gibou, R. P. Fedkiw, L.-T. Cheng and M. Kang, A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, J. Comput. Phys., 176 (2002), 205-227.       
24 S. C. Gupta, The Classical Stefan Problem: Basic Concepts, Modelling and Analysis, vol. 45 of North-Holland Series in Applied Mathematics and Mechanics, Elsevier Science B.V., Amsterdam, 2003.       
25 D. Han, A decoupled unconditionally stable numerical scheme for the Cahn-Hilliard-Hele-Shaw system, J. Sci. Comput., 66 (2016), 1102-1121.       
26 D. Han and X. Wang, A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, J. Comput. Phys., 290 (2015), 139-156.       
27 D. Han and X. Wang, Decoupled energy-law preserving numerical schemes for the Cahn-Hilliard-Darcy system, Numer. Methods Partial Differential Equations, 32 (2016), 936-954.       
28 J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, vol. 54 of Texts in Applied Mathematics, Springer, New York, 2008.       
29 E. Javierre, C. Vuik, F. J. Vermolen and S. van der Zwaag, A comparison of numerical models for one-dimensional Stefan problems, J. Comput. Appl. Math., 192 (2006), 445-459.       
30 M. Jemison, E. Loch, M. Sussman, M. Shashkov, M. Arienti, M. Ohta and Y. Wang, A coupled level set-moment of fluid method for incompressible two-phase flows, J. Sci. Comput., 54 (2013), 454-491.       
31 M. Jemison, M. Sussman and M. Arienti, Compressible, multiphase semi-implicit method with moment of fluid interface representation, J. Comput. Phys., 279 (2014), 182-217.       
32 D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, J. Comput. Phys., 123 (1996), 127-148.       
33 A. Karma and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57 (1998), 4323-4349.
34 G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for CFD, 2nd edition, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013.       
35 C. M. Klaij, J. J. W. van der Vegt and H. van der Ven, Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217 (2006), 589-611.       
36 D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, Scientific Computation, Springer, Berlin, 2009.
37 M. Kucharik, R. V. Garimella, S. P. Schofield and M. J. Shashkov, A comparative study of interface reconstruction methods for multi-material ALE simulations, J. Comput. Phys., 229 (2010), 2432-2452.       
38 B. Li and S. Da-Wen, Novel methods for rapid freezing and thawing of foods - a review, Journal of Food Engineering, 54 (2002), 175-182.
39 Z. Li, Immersed interface methods for moving interface problems, Numer. Algorithms, 14 (1997), 269-293.       
40 Z. Li and M.-C. Lai, The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171 (2001), 822-842.       
41 R. Loubère, P.-H. Maire, M. Shashkov, J. Breil and S. Galera, ReALE: a reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys., 229 (2010), 4724-4761.       
42 P. G. Martinsson, A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method, J. Comput. Phys., 242 (2013), 460-479.       
43 M. N. J. Moore, Riemann-hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows, 2016, Accepted Communications in Pure and Applied Mathematics.
44 S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, vol. 153 of Applied Mathematical Sciences, Springer, New York, N.Y., 2003.       
45 C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), 220-252.       
46 S. Rhebergen and B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., 231 (2012), 4185-4204.       
47 S. Rhebergen, B. Cockburn and J. J. W. van der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 233 (2013), 339-358.       
48 E. M. Rønquist and A. T. Patera, A Legendre spectral element method for the Stefan problem, Int. J. Number. Meth. Eng., 24 (1987), 2273-2299.       
49 B. Šarler, Stefan's work on solid-liquid phase changes, Engineering Analysis with Boundary Elements, 16 (1995), 83-92.
50 R. I. Saye, High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles, SIAM J. Sci. Comput., 37 (2015), A993-A1019.       
51 J. A. Sethian and J. Strain, Crystal growth and dendritic solidification, J. Comput. Phys., 98 (1992), 231-253.       
52 W. E. H. Sollie, O. Bokhove and J. J. W. van der Vegt, Space-time discontinuous Galerkin finite element method for two-fluid flows, J. Comput. Phys., 230 (2011), 789-817.       
53 J. J. Sudirham, J. J. W. van der Vegt and R. M. J. van Damme, Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains, Appl. Numer. Math., 56 (2006), 1491-1518.       
54 M. Sussman, K. M. Smith, M. Y. Hussaini, M. Ohta and R. Zhi-Wei, A sharp interface method for incompressible two-phase flows, J. Comput. Phys., 221 (2007), 469-505.       
55 M. Sussman and M. Y. Hussaini, A discontinuous spectral element method for the level set equation, Special issue in honor of the sixtieth birthday of Stanley Osher, J. Sci. Comput., 19 (2003), 479-500.       
56 M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics, 114 (1994), 146-159.
57 L. Tan and N. Zabaras, A level set simulation of dendritic solidification of multi-component alloys, J. Comput. Phys., 221 (2007), 9-40.       
58 H. Udaykumar, S. Marella and S. Krishnan, Sharp-interface simulation of dendritic growth with convection: Benchmarks, International Journal of Heat and Mass Transfer, 46 (2003), 2615-2627.
59 M. Vahab and G. Miller, A front-tracking shock-capturing method for two gases, Communications in Applied Mathematics and Computational Science, 11 (2016), 1-35.       
60 M. Vahab, C. Pei, M. Y. Hussaini, M. Sussman and Y. Lian, An adaptive coupled level set and moment-of-fluid method for simulating droplet impact and solidification on solid surfaces with application to aircraft icing, in 54th AIAA Aerospace Sciences Meeting, 2016, p1340.
61 J. J. W. van der Vegt and J. J. Sudirham, A space-time discontinuous Galerkin method for the time-dependent Oseen equations, Appl. Numer. Math., 58 (2008), 1892-1917.       
62 S. W. Welch and J. Wilson, A volume of fluid based method for fluid flows with phase change, J. Comput. Phys., 160 (2000), 662-682.

Go to top