A Nekhoroshev type theorem for the nonlinear KleinGordon equation with potential
Page number are going to be assigned later
2017
doi:10.3934/dcdsb.2017215 Abstract
References
Full text (488.0K)
Stefano Pasquali  Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy (email)
1 
D. Bambusi, Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations, Mathematische Zeitschrift, 230 (1999), 345387. 

2 
D. Bambusi, On long time stability in Hamiltonian perturbations of nonresonant linear PDEs, Nonlinearity, 12 (1999), 823850. 

3 
D. Bambusi, Birkhoff normal form for some nonlinear PDEs, Communications in Mathematical Physics, 234 (2003), 253285. 

4 
D. Bambusi, J.M. Delort, B. Grébert and J. Szeftel, Almost global existence for Hamiltonian semilinear KleinGordon equations with small Cauchy data on Zoll manifolds, Communications on Pure and Applied Mathematics, 60 (2007), 16651690. 

5 
D. Bambusi and B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Mathematical Journal, 135 (2006), 507567. 

6 
D. Bambusi and N. N. Nekhoroshev, A property of exponential stability in nonlinear wave equations near the fundamental linear mode, Physica D: Nonlinear Phenomena, 122 (1998), 73104. 

7 
D. Bambusi and N. N. Nekhoroshev, Long time stability in perturbations of completely resonant PDE's, Acta Applicandae Mathematica, 70 (2002), 122. 

8 
G. Benettin, L. Galgani and A. Giorgilli, A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems, Celestial Mechanics and Dynamical Astronomy, 37 (1985), 125. 

9 
J.M. Delort, On long time existence for small solutions of semilinear KleinGordon equations on the torus, Journal d'Analyse Mathématique, 107 (2009), 161194. 

10 
J.M. Delort and R. Imekraz, Long time existence for the semilinear KleinGordon equation on a compact boundaryless Riemannian manifold, Communications in Partial Differential Equations, 42 (2017), 388416. 

11 
J.M. Delort and J. Szeftel, Longtime existence for small data nonlinear KleinGordon equations on tori and spheres, International Mathematics Research Notices, 37 (2004), 18971966. 

12 
D. Fang, Z. Han and Q. Zhang, Almost global existence for the semilinear KleinGordon equation on the circle, Journal of Differential Equations, 262 (2017), 46104634. 

13 
D. Fang and Q. Zhang, Longtime existence for semilinear KleinGordon equations on tori, Journal of Differential Equations, 249 (2010), 151179. 

14 
E. Faou and B. Grébert, A Nekhoroshevtype theorem for the nonlinear Schrödinger equation on the torus, Analysis & PDE, 6 (2013), 12431262. 

15 
E. Faou, B. Grébert and E. Paturel, Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part II. Abstract splitting, Numerische Mathematik, 114 (2010), 459490. 

16 
P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, 47 (1992), 57133. 

17 
K. Nakanishi and W. Schlag, Invariant Manifolds and Dispersive Hamiltonian Evolution Equations, European Mathematical Society, 2011. 

18 
N. N. Nekhoroshev, An exponential estimate of the time of stability of nearlyintegrable Hamiltonian systems, (Russian)Uspehi Mat. Nauk, 32 (1977), 566. 

19 
S. Pasquali, Long time behaviour of the nonlinear KleinGordon equation in the nonrelativistic limit, II, preprint, arXiv:1703.01618. 

20 
J. Pöschel, Nekhoroshev estimates for quasiconvex Hamiltonian systems, Mathematische Zeitschrift, 213 (1993), 187216. 

21 
J. Pöschel, On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi, Nonlinearity, 12 (1999), 15871600. 

22 
H. Rüssmann, Invariant tori in nondegenerate nearly integrable Hamiltonian systems, Regular and Chaotic Dynamics, 6 (2001), 119204. 

Go to top
