`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Positive steady states of a density-dependent predator-prey model with diffusion
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017209      Abstract        References        Full text (583.6K)      

Kaigang Huang - School of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, China (email)
Yongli Cai - School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China (email)
Feng Rao - School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China (email)
Shengmao Fu - School of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, China (email)
Weiming Wang - School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China (email)

1 P. A. Abrams, The fallacies of "ratio-dependent" predation, Ecology, 75 (1994), 1842-1850.
2 P. A. Abrams and L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends in Ecology and Evolution, 15 (2000), p337.
3 A. Ardito and P. Ricciardi, Lyapunov functions for a generalized gause-type model, Journal of Mathematical Biology, 33 (1995), 816-828.       
4 N. F. Britton, Essential Mathematical Biology, Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd., London, 2003.       
5 Y. L. Cai, W. M. Wang and J. F. Wang, Dynamics of a diffusive predator-prey model with additive allee effect, International Journal of Biomathematics, 39 (2012), 105-115.
6 Y. L. Cai, M. Banerjee, Y. Kang and W. M. Wang, Spatiotemporal complexity in a predator-prey model with weak allee effects, Mathematical Biosciences and Engineering, 11 (2014), 1247-1274.       
7 M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340.       
8 Y. H. Du, P. Y. H. Pang and M. X. Wang, Qualitative analysis of a prey-predator model with stage structure for the predator, SIAM J. Appl. Math., 69 (2008), 596-620.       
9 A. Eigenwillig, Real root isolation for exact and approximate polynomials using descartes' rule of signs, 2008.
10 S. Fan, A new extracting formula and a new distinguishing means on the one variable cubic equation, Natural Science Journal of Hainan Teacheres College, 2 (1989), 91-98.
11 S. M. Fu, Z. J. Wen and S. B. Cui, Uniform boundedness and stability of global solutions in a strongly coupled three-species cooperating model, Nonlinear Analysis Real World Applications, 9 (2008), 272-289.       
12 K. Fujii, Complexity-stability relationship of two-prey-one-predator species system model: Local and global stability, Journal of Theoretical Biology, 69 (1977), 613-623.       
13 K. Hasík, On a predator-prey system of gause type, Journal of Mathematical Biology, 60 (2010), 59-74.       
14 J. Jang, W. M. Ni and M. Tang, Global bifurcation and structure of turing patterns in the 1-d lengyel-epstein model, Journal of Dynamics and Differential Equations, 16 (2004), 297-320.       
15 Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, Journal of Mathematical Biology, 67 (2013), 1227-1259.       
16 W. Ko and K. Ryu, Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment, Journal of Mathematical Analysis and Applications, 327 (2007), 539-549.       
17 Y. Kuang, Rich dynamics of gause-type ratio-dependent predator-prey system, Fields Institute Communications, 21 (1999), 325-337.       
18 Y. Kuang, Global stability of gause-type predator-prey systems, Journal of Mathematical Biology, 28 (1990), 463-474.       
19 S. B. Li, J. H. Wu and Y. Y. Dong, Turing patterns in a reaction-diffusion model with the degn-harrison reaction scheme, Journal of Differential Equations, 259 (2015), 1990-2029.       
20 X. Li, W. H. Jiang and J. P. Shi, Hopf bifurcation and turing instability in the reaction-diffusion holling-tanner predator-prey model, Journal of Applied Mathematics, 78 (2013), 287-306.       
21 C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, Journal of Differential Equations, 72 (1988), 1-27.       
22 Y. Lou and W. M. Ni, Diffusion vs cross-diffusion: An elliptic approach, Journal of Differential Equations, 154 (1999), 157-190.       
23 W. M. Ni and M. Tang, Turing patterns in the lengyel-epstein system for the cima reaction, Transactions of the American Mathematical Society, 357 (2005), 3953-3969.       
24 W. M. Ni, Cross-diffusion and their spike-layer steady states, Notices of the American Mathematical Society, 45 (1998), 9-18.       
25 L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, 1974.       
26 P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, Journal of Differential Equations, 200 (2004), 245-273.       
27 R. Peng and M. X. Wang, Note on a ratio-dependent predator-prey system with diffusion, Nonlinear Analysis Real World Applications, 7 (2006), 1-11.       
28 J. F. Savino and R. A. Stein, Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation, Transactions of the American Fisheries Society, 111 (1982), 255-266.
29 J. P. Shi, Persistence and bifurcation of degenerate solutions, Journal of Functional Analysis, 169 (1999), 494-531.
30 H. B. Shi and S. G. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, Journal of Applied Mathematics, 80 (2015), 1534-1568.       
31 H. B. Shi, W. T. Li and G. Lin, Positive steady states of a diffusive predator-prey system with modified holling-tanner functional response, Nonlinear Analysis Real World Applications, 11 (2010), 3711-3721.       
32 A. Sikder and A. B. Roy, Persistence of a generalized gause-type two prey-two predator pair linked by competition, Mathematical Biosciences, 122 (1994), 1-23.       
33 I. Takagi, Point-condensation for a reaction-diffusion system, Journal of Differential Equations, 61 (1986), 208-249.       
34 M. X. Wang, Stationary patterns of strongly coupled prey-predator models, Journal of Mathematical Analysis and Applications, 292 (2004), 484-505.       
35 M. X. Wang, Non-constant positive steady states of the sel'kov model, Journal of Differential Equations, 190 (2003), 600-620.       
36 Z. J. Wen and S. M. Fu, Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics, Journal of Computational and Applied Mathematics, 230 (2009), 34-43.       
37 X. Z. Zeng and Z. H. Liu, Non-constant positive steady states of a prey-predator system with cross-diffusions, Journal of Mathematical Analysis and Applications, 332 (2007), 989-1009.       
38 X. Z. Zeng and Z. H. Liu, Nonconstant positive steady states for a ratio-dependent predator-prey system with cross-diffusion, Journal of Mathematical Analysis and Applications, 11 (2010), 372-390.       

Go to top