`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Restrictions to the use of time-delayed feedback control in symmetric settings
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017207      Abstract        References        Full text (627.5K)      

Edward Hooton - Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States (email)
Pavel Kravetc - Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States (email)
Dmitrii Rachinskii - Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States (email)

1 G. Brown, C. Postlethwaite and M. Silber, Time-delayed feedback control of unstable periodic orbits near a subcritical hopf bifurcation, Physica D: Nonlinear Phenomena, 240 (2011), 859-871.       
2 K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using dde-biftool, ACM Trans. Math. Softw., 28 (2002), 1-21, URL http://doi.acm.org/10.1145/513001.513002.       
3 K. Engelborghs, T. Luzyanina and G. Samaey, DDE-BIFTOOL v. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations. Department of Computer Science, Technical report, KU Leuven, Technical Report TW-330, Leuven, Belgium, 2001.
4 B. Fiedler, V. Flunkert, P. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 319-341.       
5 B. Fiedler, S. Yanchuk, V. Flunkert, P. Hövel, H.-J. Wünsche and E. Schöll, Delay stabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser, Physical Review E, 77 (2008), 066207, 9pp, URL http://link.aps.org/doi/10.1103/PhysRevE.77.066207.       
6 E. Hooton, Z. Balanov, W. Krawcewicz and D. Rachinskii, Noninvasive Stabilization of Periodic Orbits in $O_4$-Symmetrically Coupled Systems Near a Hopf Bifurcation Point, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750087, 18, URL http://dx.doi.org/10.1142/S0218127417500870.
7 E. Hooton and A. Amann, Analytical limitation for time-delayed feedback control in autonomous systems, Physical Review Letters, 109 (2012), 154101.
8 H. Nakajima, On analytical properties of delayed feedback control of chaos, Physics Letters A, 232 (1997), 207-210.
9 C. Postlethwaite, G. Brown and M. Silber, Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems, Phil. Trans. R. Soc. A, 371 (2013), 20120467, 20pp.       
10 K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, 170 (1992), 421-428.
11 S. Schikora, P. Hövel, H.-J. Wünsche, E. Schöll and F. Henneberger, All-optical noninvasive control of unstable steady states in a semiconductor laser, Physical Review Letters, 97 (2006), 213902.
12 I. Schneider, Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371 (2013), 20120472, 10pp.       
13 I. Schneider, Equivariant Pyragas control, Master's thesis, Freie Universität Berlin, 2014.
14 I. Schneider and M. Bosewitz, Eliminating restrictions of time-delayed feedback control using equivariance, Discrete and Continuous Dynamical Systems Series A, 36 (2016), 451-467.       
15 I. Schneider and B. Fiedler, Symmetry-breaking control of rotating waves, in Control of Self-Organizing Nonlinear Systems, Springer, 2016, 105-126.       
16 J. Sieber, Generic stabilizability for time-delayed feedback control, in Proc. R. Soc. A, vol. 472, The Royal Society, 2016, 20150593.
17 J. Sieber, A. Gonzalez-Buelga, S. Neild, D. Wagg and B. Krauskopf, Experimental continuation of periodic orbits through a fold, Physical Review Letters, 100 (2008), 244101.
18 M. Tlidi, A. Vladimirov, D. Pieroux and D. Turaev, Spontaneous motion of cavity solitons induced by a delayed feedback, Physical Review Letters, 103 (2009), 103904.
19 S. Yanchuk, K. R. Schneider and L. Recke, Dynamics of two mutually coupled semiconductor lasers: Instantaneous coupling limit, Physical Review E, 69 (2004), 056221, URL http://link.aps.org/doi/10.1103/PhysRevE.69.056221.

Go to top