`a`
Evolution Equations and Control Theory (EECT)
 

Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions
Pages: 599 - 613, Issue 4, December 2017

doi:10.3934/eect.2017030      Abstract        References        Full text (375.2K)           Related Articles

Poongodi Rathinasamy - Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamil Nadu, India (email)
Murugesu Rangasamy - Department of Mathematics, SRMV College of Arts and Science, Coimbatore - 641 020, Tamil Nadu, India (email)
Nirmalkumar Rajendran - Department of Mathematics, SRMV College of Arts and Science, Coimbatore - 641 020, Tamil Nadu, India (email)

1 A. Anguraj and M. Mallika Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electronic Journal of Differential Equations, 111 (2005), 1-8.       
2 A. Anguraj and M. Mallika Arjunan, Existence results for an impulsive neutral integro-differential equations in Banach spaces, Nonlinear Studies, 16 (2009), 33-48.       
3 A. Anguraj and K. Karthikeyan, Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions, Nonlinear Analysis, 70 (2009), 2717-2721.       
4 K. Balachandran, J. Y. Park and S. H. Park, Controllability of nonlocal impulsive quasilinear integrodifferential systems in Banach spaces, Reports on Mathematical Physics, 65 (2010), 247-257.       
5 J. Banas and K. Goebel, Measure of Noncompactness in Banach Space, in: Lecture Notes in Pure and Applied Matyenath, Dekker, New York, 1980.       
6 I. Benedetti, V. Obukhovskii and P. Zecca, Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator, Discussiones Mathematicae Differential Inclusions, Control and Optimization, 31 (2011), 39-69.       
7 A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional System, Birkhäuser Boston, Inc., Boston, MA, 2007.       
8 L. Byszewski, Theorems about existence and uniqueness of solutions of a semi-linear evolution nonlocal Cauchy problem, Journal of Mathematical Analysis and Applications, 162 (1991), 494-505.       
9 L. Byszewski, Existence and uniqueness of classical solutions to a functional differential abstract nonlocal Cauchy problem, Journal of Applied Mathematics and Stochastic Analysis, 12 (1999), 91-97.       
10 Y. K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Analysis: Hybrid Systems, 2 (2008), 209-218.       
11 Y. K. Chang, J. J. Nieto and W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, Journal of Optimization Theory and Applications, 142 (2009), 267-273.       
12 P. Y. Chen and Y. X. Li, Existence and uniqueness of strong solutions for nonlocal evolution equations, Electronic Journal of Differential Equations, 18 (2014), 1-9.       
13 C. Cuevas, E. Hernandez and M. Rabello, The existence of solutions for impulsive neutral functional differential equations, Computers and Mathematics with Applications, 58 (2009), 744-757.       
14 K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
15 X. Fu, Controllability of abstract neutral functional differential systems with unbounded delay, Applied Mathematics and Computation Archive, 151 (2004), 299-314.
16 M. Guo, X. Xue and R. Li, Controllability of impulsive evolution inclusions with nonlocal conditions, Journal of Optimization Theory and Applications, 120 (2004), 355-374.       
17 S. Ji, G. Li and M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Applied Mathematics and Computation, 217 (2011), 6981-6989.       
18 M. Kamenskii, P. Obukhovskii and Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, 2001.       
19 V. Kavitha, M. M. Arjunan and C. Ravichandran, Existence results for impulsive systems with nonlocal conditions in Banach spaces, The Journal of Nonlinear Sciences and Applications, 4 (2011), 138-151.       
20 J. Liang, H. J. Liu and T. Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Mathematical and Computer Modelling, 49 (2009), 798-804.       
21 J. Liang and H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Applied Mathematics and Computation, 254 (2015), 20-29.       
22 J. A. Machado, C. Ravichandran, M. Rivero and J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, Fixed Point Theory and Applications, 2013 (2013), 1-16.       
23 N. I. Mahmudov and A. Denker, On controllability of linear stochastic system, International Journal of Control, 73 (2000), 144-151.       
24 H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis, 4 (1980), 985-999.       
25 V. Obukhovski and P. Zecca, Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Analysis, 70 (2009), 3424-3436.       
26 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.       
27 B. Radhakrishnan, A. Mohanraj and V. Vinoba, Existence of solutions for nonlinear impulsive neutral integro-differential equations of Sobolev type with nonlocal conditions in Banach spaces, Electronic Journal of Differential Equations, 18 (2013), 1-13.       
28 S. Sivasankaran, M. Mallika Arjunan and V. Vijayakumar, Existence of global solutions for impulsive functional differential equations with nonlocal conditions, The Journal of Nonlinear Sciences and its Applications, 4 (2011), 102-114.
29 S. Sivasankaran, V. Vijayakumar and M. Mallika Arjunan, Existence of global solutions for impulsive abstract partial neutral functional differential equations, International Journal of Nonlinear Science, 11 (2011), 412-426.       
30 Z. Tai, Controllability of fractional impulsive neutral integrodifferential systems with a nonlocal Cauchy condition in Banach spaces, Applied Mathematics Letters, 24 (2011), 2158-2161.       
31 C. C. Travis and G. F. Webb, Partial functional differential equations with deviating arguments in time variables, Journal of Mathematical Analysis and Applications, 56 (1976), 397-409.       
32 V. Vijayakumar, C. Ravichandran and R. Murugesu, Nonlocal controllability of mixed Volterra-Fredholm type fractional semilinear integro-differential inclusions in banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems: Series B, 20 (2013), 485-502.       
33 V. Vijayakumar, A. Selvakumar and R. Murugesu, Controllability for a class of fractional neutral integro-differential equations with unbounded delay, Applied Mathematics and Computation, 232 (2014), 303-312.       
34 V. Vijayakumar, C. Ravichandran, R. Murugesu and J. J. Trujillo, Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, Applied Mathematics and Computation, 247 (2014), 152-161.       
35 J. Wang and W. Wei, Controllability of integrodifferential systems with nonlocal initial conditions in Banach spaces, Journal of Mathematical Sciences, 177 (2011), 459-465.       
36 Y. Zhou, V. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evolution Equations and Control Theory, 4 (2015), 507-524.       

Go to top