`a`
Evolution Equations and Control Theory (EECT)
 

Stability and instability of solutions to the drift-diffusion system
Pages: 587 - 597, Issue 4, December 2017

doi:10.3934/eect.2017029      Abstract        References        Full text (355.8K)           Related Articles

Takayoshi Ogawa - Tohoku University, Mathematical Institute, Sendai 980-8578, Japan (email)
Hiroshi Wakui - Mathematical Institute, Tohoku University, Sendai 980-8578, Japan (email)

1 P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math., 68 (1995), 229-239.       
2 P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interactions of particles I, Colloq. Math., 66 (1994), 319-334.       
3 A. Blanchet, J. A. Carrillo and P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.       
4 V. Calvez, L. Corrias and M. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), 561-584.       
5 L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in hight space dimensions, Milan J. Math., 72 (2004), 1-28.       
6 E. Feireisl and P. Laurençot, Non-isothermal Smoluchowski-Poisson equations as a singular limit of the Navier-Stokes-Fourier-Poisson system, J. Math. Pures Appl., 88 (2007), 325-349.       
7 A. Kimijima, K. Nakagawa and T. Ogawa, Threshold of global behavior of solutions to a degenerate drift-diffusion system in between two critical exponents, Calc. Var. Partial Differential Equations, 53 (2015), 441-472.       
8 T. Kobayashi and T. Ogawa, Fluid mechanical approximation to the degenerated drift-diffusion and chemotaxis equations in barotropic model, Indiana Univ. Math. J., 62 (2013), 1021-1054.       
9 M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differential Integral Equations, 16 (2003), 427-452.       
10 M. Kurokiba and T. Ogawa, Finite time blow up for a solution to system of the drift-diffusion equations in higher dimensions, Math. Z., 284 (2016), 231-253.       
11 T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.       
12 T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.       
13 T. Nagai, Blow up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.       
14 T. Nagai and T. Ogawa, Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in $\mathbbR^2$, Funkcial. Ekvac., 59 (2016), 67-112.       
15 T. Ogawa, Decay and asymptotic behavior of a solution of the Keller-Segel system of degenerate and nondegenerate type, Banach Center Publ., 74 (2006), 161-184.       
16 T. Ogawa, Asymptotic stability of a decaying solution to the Keller-Segel system of degenerate type, Differential Integral Equations, 21 (2008), 1113-1154.       
17 T. Ogawa and H. Wakui, Non-uniform bound and finite time blow up for solutions to a drift-diffusion equation in higher dimensions, Anal. Appl. (Singap.), 14 (2016), 145-183.       
18 T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, I, Generation of the weak solution, Adv. Differential Equations, 14 (2009), 433-476.       
19 T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, II, Blow-up threshold, Differential Integral Equations, 22 (2009), 1153-1172.       
20 H. Wakui, Asymptotic behavior of a weak solution to a degenerate drift-diffusion equation, Master course thesis, Tohoku University, 2012.

Go to top