`a`
Evolution Equations and Control Theory (EECT)
 

Some problems of guaranteed control of the Schlögl and FitzHugh---Nagumo systems
Pages: 559 - 586, Issue 4, December 2017

doi:10.3934/eect.2017028      Abstract        References        Full text (600.4K)           Related Articles

Vyacheslav Maksimov - Krasovskii Institute of Mathematics and Mechanics of UB RAS, Ekaterinburg 620990, Russian Federation (email)

1 V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, USA, 1993.       
2 T. Bretten and K. Kunisch, Riccati-based feedback control of the monodomian equations with the Fitzhugh-Nagumo model, SIAM J. Control and Optimization, 52 (2014), 4057-4081.       
3 R. Buchholz, H. Engel, E. Kanimann and F. Tröltzsch, On the optimal control of the Schlögl-model, Computatiomnal Optimization and Application, 56 (2013), 153-185.       
4 E. Casas, C. Ryll and F. Tröltzsch, Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems, Computational Methods in Applied Mathematics, 13 (2013), 415-442.       
5 H. O. Fattorini, Infinite Dimensional Optimization and Control Theory, Cambridge University Press, 1999.       
6 A. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, AMS, Providens, Rhode Island, 2000.
7 N. Krasovskii and A. Subbotin, Game-Theoretical Control Problems, Springer, Berlin, 1988.       
8 I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Part I: Abstract Parabolic Systems, Cambridge University Press, 2000.       
9 I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Part II: Abstract Hyperbolic-lice Systems over a Finite Time Horizon, Cambridge University Press, 2000.       
10 V. Maksimov, Feedback minimax control for parabolic variational inequality, C.R.Acad.Sci., Paris, 328 (2000), 105-108.
11 V. Maksimov, Yu. S. Osipov and L. Pandolfi, The robust boundary control: The case of Dirichlet boundary conditions, (Russian)Dokl. Akad. Nauk, 374 (2000), 310-312.       
12 V. Maksimov, On reconstruction of bundary controls in a parabolic equation, Advances in Differential Equations, 14 (2009), 1193-1211.       
13 V. Maksimov, Game control problem for a phase field equation, Journal of Optimization Theory and Applocations, 170 (2016), 294-307.       
14 C. McMillan and R. Triggiani, Min-max game theory and algebraic Riccati equations for boundary control problems with analytic semigroups: Part I: The stable case, Lecture Notes in Pure and Applied Mathematics, 152 (1994), 757-780.       
15 B. S. Mordukhovich, Optimal control and feedback design of state-constrained parabolic systems in uncertainty conditions, Applicable Analysis, 90 (2011), 1075-1109.
16 B. S. Mordukhovich, Suboptimal minimax design of constrained parabolic systems with mixed boundary control, Applied Mathematics and Computations, 204 (2008), 580-588.       
17 P. Nestler, E. Scholl and F. Tröltzsch, Optimization of nonlocal time-delayed feedback controllers, Computational Optimization and Application, 64 (2016), 265-294.       
18 Yu. S. Osipov, On the theory of differential games for systems with distributed parameters, Doklady Mathematics, 223 (1975), 1314-1317.       
19 K. Rull, J. Lober, S. Martems, H. Engel and F. Tröltzsch, Analytical, optimal, and Sparse optimal control of traveling wave solutions to reaction-diffusion systems, Control and self-organizing nonlinear systems (eds. F.Scholl, S.H.L. Klapp and P.Hovel), Springer, (2016), 189-210.       
20 F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, AMS, Providence, Rhode Island, 2010.       

Go to top