`a`
Advances in Mathematics of Communications (AMC)
 

Self-dual codes with an automorphism of order 13
Pages: 635 - 645, Issue 3, August 2017

doi:10.3934/amc.2017047      Abstract        References        Full text (380.7K)           Related Articles

Nikolay Yankov - Faculty of Mathematics and Informatics, Shumen University, 9700 Shumen, Bulgaria (email)
Damyan Anev - Faculty of Mathematics and Informatics, Shumen University, 9700 Shumen, Bulgaria (email)
Müberra Gürel - Istanbul Aydin University, Istanbul, Turkey (email)

1 A. Baartmans and V. Yorgov, Some new extremal codes of lengths 76 and 78, IEEE Trans. Inf. Theory, 49 (2003), 1353-1354.       
2 I. Bouyukliev, About the code equivalence, in Advances in Coding Theory and Cryptography, World Scient. Publ. Comp., 2007, 126-151.       
3 R. Dontcheva and M. Harada, Extremal doubly-even [80,40,16] codes with an automorphism of order 19, Finite Fields Appl., 9 (2003), 157-167.       
4 G. Dorfer and H. Maharaj, Generalized AG codes and generalized duality, Finite Fields Appl., 9 (2003), 194-210.       
5 S. T. Dougherty, T. A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inf. Theory, 43 (1997), 2036-2047.       
6 P. Gaborit and A. Otmani, Experimental constructions of self-dual codes, Finite Fields Appl., 9 (2003), 372-394.       
7 The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8.6, 2016, http://www.gap-system.org
8 T. A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 74-88, Discr. Math., 306 (2006), 2064-2072.       
9 T. A. Gulliver, M. Harada and J.-L. Kim, Construction of new extremal self-dual codes, Discr. Math., 263 (2003), 81-91.       
10 M. Harada and A. Munemasa, On $s$-extremal singly even self-dual $[24k+8,12k+4,4k+2]$ codes, preprint, arXiv:1511.02972
11 M. Harada and A. Munemasa, Some restrictions on weight enumerators of singly even self-dual codes, IEEE Trans. Inf. Theory, 52 (2006), 1266-1269.       
12 W. C. Huffman, Automorphisms of codes with applications to extremal doubly even codes of length 48, IEEE Trans. Inf. Theory, 28 (1982), 511-521.       
13 W. C. Huffman and V. S. Pless, Fundamentals of Error-Correcting Codes, Cambridge Univ. Press, 2003.       
14 S. Kapralov, R. Russeva and V. Radeva, New extremal doubly even $[80, 40, 16]$ codes with an automorphism of order 13, in Proc. 8th Int. Workshop Algebr. Combin. Coding Theory, 2002, 139-142.
15 E. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inf. Theory, 44 (1998), 134-139.       
16 N. Yankov, Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7, Adv. Math. Commun., 8 (2014), 73-81.       
17 N. Yankov, D. Anev and M. Gürel, Constructing the self-dual codes with an automorphism of order 13 with 6 cycles, available at http://shu.bg/tadmin/upload/storage/2497.pdf
18 N. Yankov and M. H. Lee, Classification of self-dual codes of length 50 with an automorphism of odd prime order, Des. Codes Crypt., 74 (2015), 571-579.       
19 N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inf. Theory, 57 (2011), 7498-7506.       
20 V. Yorgov, Binary self-dual codes with automorphisms of odd order, Probl. Inf. Transm., 19 (1983), 260-270.       
21 V. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, IEEE Trans. Inf. Theory, 33 (1987), 77-82.       
22 T. Zhang, J. Michel, T. Feng and G. Ge, On the existence of certain optimal self-dual codes with lengths between 74 and 116, Electr. J. Combin., 22 (2015), P4.33.       

Go to top