`a`
Advances in Mathematics of Communications (AMC)
 

Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields
Pages: 595 - 613, Issue 3, August 2017

doi:10.3934/amc.2017045      Abstract        References        Full text (472.1K)           Related Articles

Ekkasit Sangwisut - Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phatthalung Campus, Phatthalung 93110, Thailand (email)
Somphong Jitman - Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand (email)
Patanee Udomkavanich - Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand (email)

1 N. Aydin, T. Asamov and T. A. Gulliver, Some open problems on quasi-twisted and related code constructions and good quaternary codes, in Proc. IEEE ISIT' 2007, Nice, France, 2007, 856-860.
2 N. Aydin, I. Siap and D. J. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Crypt., 24 (2001), 313-326.       
3 G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.       
4 E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.       
5 B. Chen, H. Q. Dinh, Y. Fan and S. Ling, Polyadic constacyclic codes, IEEE Trans. Inf. Theory, 61 (2015) , 4895-4904.       
6 B. Chen, Y. Fan, L. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231.       
7 E. Z. Chen, An explicit construction of 2-generator quasi-twisted codes, IEEE Trans. Inf. Theory, 54 (2008), 5770-5773.       
8 V. Chepyzhov, A Gilbert-Vashamov bound for quasitwisted codes of rate $\frac1n$, in Proc. Joint Swedish-Russian Int. Workshop Inf. Theory, Mölle, Sweden, 1993, 214-218.
9 R. Daskalov and P. Hristov, New quasi-twisted degenerate ternary linear codes, IEEE Trans. Inf. Theory, 49 (2003), 2259-2263.       
10 T. A. Gulliver, M. Harada and H. Miyabayashi, Double circulant and quasi-twisted self-dual codes over $\mathbbF_5$ and $\mathbbF_7$, Adv. Math. Commun., 1 (2007), 223-238.       
11 T. A. Gulliver, N. P. Secord and S. A. Mahmoud, A link between quasi-cyclic codes and convolution codes, IEEE Trans. Inf. Theory, 44 (1998), 431-435.       
12 Y. Jia, On quasi-twisted codes over finite fields, Finite Fields Appl., 18 (2012), 237-257.       
13 Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inf. Theory, 13 (2011), 2243-2251.       
14 X. Kai, X. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inf. Theory, 60 (2014) , 2080-2086.       
15 T. Kasami, A Gilbert-Varshamov bound for quasi-cyclic codes of rate $\frac{1}{2}$, IEEE Trans. Inf. Theory, 20 (1974), 679.       
16 A. Ketkar, A. Klappenecker, S. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inf. Theory, 52 (2006), 4892-4914.       
17 G. G. La Guardia On optimal constacyclic codes, preprint, arXiv:1311.2505       
18 L. Lin, H. Liu and B. Chen, Existence conditions for self-orthogonal negacyclic codes over finite fields, Adv. Math. Commun., 9 (2015), 1-7.       
19 S. Ling, H. Niederreiter and P. Solé, On the algebraic structure of quasi-cyclic codes IV: Repeated roots, Des. Codes Crypt., 38 (2006), 337-361.       
20 S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes I: Finite fields, IEEE Trans. Inf. Theory, 47 (2001) , 2751-2760.       
21 S. Ling, P. Solé, Good self-dual quasi-cyclic codes exist, IEEE Trans. Inf. Theory, 49 (2003), 1052-1053.       
22 S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes III: Generator theory, IEEE Trans. Inf. Theory, 51 (2005), 2692-2700.       
23 G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer-Verlag, Berlin, 2006.       
24 H. Özadamb and F. Özbudak, A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$, Adv. Math. Commun., 3 (2009), 265-271.       
25 E. M. Rains and N. J. A. Sloane, Self-dual codes, in Handbook of Coding Theory, Elsevier, North-Holland, 1998, 177-294.       
26 E. Sangwisut, S. Jitman, S. Ling and P. Udomkavanich, Hulls of cyclic and negacyclic codes over finite fields, Finite Fields Appl., 33 (2015), 232-257.       
27 J. P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973.       
28 G. Solomon and H. C. A. van Tilborg, A connection between block and convolutional codes, SIAM J. Appl. Math., 37 (1979), 358-369.       
29 Y. Yang and W. Cai, On self-dual constacyclic codes over finite fields, Des. Codes Crypt., 74 (2015), 355-364.       

Go to top