Advances in Mathematics of Communications (AMC)

Generalized bent functions - sufficient conditions and related constructions
Pages: 549 - 566, Issue 3, August 2017

doi:10.3934/amc.2017043      Abstract        References        Full text (475.2K)           Related Articles

Samir Hodžić - University of Primorska, FAMNIT, Koper, Slovenia (email)
Enes Pasalic - University of Primorska, FAMNIT, Koper, Slovenia (email)

1 M. J. E. Golay, Complementary series, IRE Trans. Inf. Theory, 7 (1961), 82-87.       
2 S. Hodžić and E. Pasalic, Generalized bent functions - Some general construction methods and related necessary and sufficient conditions, Crypt. Commun., 7 (2015), 469-483.       
3 S. Hodžić and E. Pasalic, Construction methods for generalized bent functions, preprint, arXiv:1604.02730
4 P. V. Kumar, R. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, J. Combin. Theory Ser. A, 40 (1985), 90-107.       
5 H. Liu, K. Feng and R. Feng, Nonexistence of generalized bent functions from $\mathbb Z^n_2$ to $\mathbb Z_m$, Des. Codes Crypt., 82 (2017), 647-662.       
6 P. Sarkar and S. Maitra, Cross-correlation analysis of cryptographically useful Boolean functions and S-boxes, Theory Comp. Syst., 35 (2002), 39-57.       
7 K. U. Schmidt, Complementary sets, generalized Reed-Muller Codes, and power control for OFDM. IEEE Trans. Inf. Theory, 52 (2007), 808-814.       
8 K. U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, in IEEE Int. Symp. Inf. Theory - ISIT'2007, Nice, France, 2007.       
9 J. Seberry and X.-M. Zhang, Highly nonlinear 0-1 balanced Boolean functions satisfying strict avalanche criterion, in Advances in Cryptography - Auscrypt'92, Springer, Berlin, 1993, 145-755.       
10 B. K. Singh, Secondary constructions on generalized bent functions, IACR Crypt. ePrint Arch., 2012, p.17.
11 B. K. Singh, On cross-correlation spectrum of generalized bent functions in generalized Maiorana-McFarland class, Inf. Sci. Lett., 2 (2013), 139-145.
12 P. Solé and N. Tokareva, Connections between quaternary and binary bent functions, Crypt. ePrint Arch., 2009, available at https://eprint.iacr.org/2009/544.pdf
13 V. I. Solodovnikov, Bent functions from a finite Abelian group into a finite Abelian group, Discr. Math. Appl., 12 (2002), 111-126.       
14 P. Stanica and T. Martinsen, Octal bent generalized Boolean functions, preprint, arXiv:1102.4812
15 P. Stanica, T. Martinsen, S. Gangopadhyay and B. K. Singh, Bent and generalized bent Boolean functions, Des. Codes Crypt., 69 (2013), 77-94.       
16 N. N. Tokareva, Generalizations of bent functions - a survey, J. Appl. Industr. Math., 5 (2011), 110-129.       

Go to top