`a`
Kinetic and Related Models (KRM)
 

Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$
Pages: 191 - 213, Issue 1, February 2018

doi:10.3934/krm.2018010      Abstract        References        Full text (495.0K)           Related Articles

Zhong Tan - School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and Scientific Computing, Xiamen University, Fujian, Xiamen, 361005, China (email)
Leilei Tong - School of Mathematical Science and Fujian Provincial Key Laboratory, on Mathematical Modeling & High Performance Scientific Computing, Xiamen University, Xiamen 361005, China (email)

1 F. Chen, Introduction to plasma physics and controlled fusion, Plasma Physics, Vol. 1, 1974.
2 R. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl. (Singap.), 10 (2012), 133-197.       
3 R. Duan, Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., 8 (2011), 375-413.       
4 J. Fan and F. Li, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system, Acta Appl Math, 133 (2014), 19-32.       
5 Y. Feng, Y. Peng and S. Wang, Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations, Nonlinear Anal. Real World Appl., 19 (2014), 105-116.       
6 P. Germain, S. Ibrahim and N. Masmoudi, Well-posedness of the Navier-Stokes-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 71-86.       
7 L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Prentice Hall, 2004.       
8 Y. Guo, The Vlasov-Poisson-Landau system in a periodic box, J. Amer. Math. Soc., 25 (2012), 759-812.       
9 Y. Guo and Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208.       
10 G. Hong, X. Hou, H. Peng and C. Zhu, Global spherically symmetric classical solution to the Navier-Stokes-Maxwell system with large initial data and vacuum, Sci. China Math., 57 (2014), 2463-2484.       
11 S. Ibrahim and S. Keraani, Global small solutions of the Navier-Stokes-Maxwell system, SIAM J. Math. Anal., 43 (2011), 2275-2295.       
12 S. Ibrahim and T. Yoneda, Local solvability and loss of smoothness of the Navier-Stokes-Maxwell equations with large initial data, J. Math. Anal. Appl., 396 (2012), 555-561.       
13 J. Jerome, The Cauchy problem for compressible hydrodynamic-Maxwell systems: A local theory for smooth solutions, Differential Integral Equations, 16 (2003), 1345-1368.       
14 T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58 (1975), 181-205.       
15 F. Li and Y. Mu, Low Mach number limit of the full compressible Navier-Stokes-Maxwell system, J. Math. Anal. Appl., 412 (2014), 334-344.       
16 A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.       
17 N. Masmoudi, Global well posedness for the Maxwell-Navier-Stokes system in $2D$, J. Math. Pures Appl., 93 (2010), 559-571.       
18 T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluids Dynamics, Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay, 1978.       
19 V. Sohinger and R. Strain, The Boltzmann equation, Besov spaces, and optimal time decay rates in $\mathbbR_x^n$, Advances in Mathematics, 261 (2014), 274-332.       
20 R. Strain and Y. Guo, Almost exponential decay near Maxwellian, Comm. Partial Differential Equations, 31 (2006), 417-429.       
21 Z. Tan and Y. Wang, Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force, Nonlinear Anal., 71 (2009), 5866-5884.       
22 Z. Tan and Y. Wang, Global solution and large-time behavior of the $3D$ compressible Euler equations with damping, J. Differential Equations, 254 (2013), 1686-1704.       
23 Z. Tan, Y. Wang and Y. Wang, Decay estimates of solutions to the compressible Euler-Maxwell system in $\mathbbR^3$, J. Differential Equations, 257 (2014), 2846-2873.       
24 Y. Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $\mathbbR^3$, SIAM J. Math. Anal., 44 (2012), 3281-3323.       
25 J. Yang and S. Wang, Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations, Sci. China Math., 57 (2014), 2153-2162.       

Go to top