`a`
Kinetic and Related Models (KRM)
 

The derivation of the linear Boltzmann equation from a Rayleigh gas particle model
Pages: 137 - 177, Issue 1, February 2018

doi:10.3934/krm.2018008      Abstract        References        Full text (638.8K)           Related Articles

Karsten Matthies - Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom (email)
George Stone - Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom (email)
Florian Theil - Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom (email)

1 W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, 2011.       
2 L. Arlotti and B. Lods, Integral representation of the linear Boltzmann operator for granular gas dynamics with applications, Journal of Statistical Physics, 129 (2007), 517-536.       
3 J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2006.       
4 M. Bisi, J. A. Cañizo and B. Lods, Entropy dissipation estimates for the linear Boltzmann operator, Journal of Functional Analysis, 269 (2015), 1028-1069.       
5 T. Bodineau, I. Gallagher and L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Inventiones Mathematicae, 203 (2016), 493-553.       
6 T. Bodineau, I. Gallagher and L. Saint-Raymond. From hard spheres dynamics to the Stokes-Fourier equations: An L$^2$ analysis of the Boltzmann-Grad limit, Comptes Rendus Mathematique, 353 (2015), 623-627.       
7 C. Boldrighini, L. A. Bunimovich and Y. G. Sinaĭ, On the Boltzmann equation for the Lorentz gas, J. Statist. Phys., 32 (1983), 477-501.       
8 M. Born and H. S. Green, A general kinetic theory of liquids. i. the molecular distribution functions, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 188 (1946), 10-18.       
9 T. Carleman, Problemes Mathématiques Dans la Théorie Cinétique de Gaz, volume 2. Almqvist & Wiksells boktr, 1957.       
10 C. Cercignani, The Boltzmann Equation and Its Applications, volume 67 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988.       
11 C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, volume 106 of Applied Mathematical Sciences, Springer-Verlag, 1994.       
12 D. L. Cohn, Measure Theory, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, New York, second edition, 2013.       
13 L. Desvillettes and V. Ricci, The Boltzmann-Grad limit of a stochastic Lorentz gas in a force field, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), 637-648.       
14 I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics. European Mathematical Society, 2013.       
15 G. Gallavotti, Statistical Mechanics. A Short Treatise, Theoretical and Mathematical Physics. Springer-Verlag Berlin Heidelberg, 1999.       
16 F. Golse, On the periodic Lorentz gas and the Lorentz kinetic equation, Ann. Fac. Sci. Toulouse Math. (6), 17 (2008), 735-749.       
17 O. E. Lanford, Dynamical systems, theory and applications: Battelle seattle 1974 rencontres, Chapter Time Evolution of Large Classical Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 38 (1975), 1-111.
18 J. L. Lebowitz and H. Spohn, Transport properties of the Lorentz gas: Fourier's law, J. Statist. Phys., 19 (1978), 633-654.       
19 J. L. Lebowitz and H. Spohn, Microscopic basis for Fick's law for self-diffusion, J. Statist. Phys., 28 (1982), 539-556.       
20 J. L. Lebowitz and H. Spohn, Steady state self-diffusion at low density, J. Statist. Phys., 29 (1982), 39-55.       
21 H. Lorentz, The motion of electrons in metallic bodies i, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 7 (1905), 438-453.
22 J. Marklof, Kinetic transport in crystals, In XVIth International Congress on Mathematical Physics, pages 162-179. World Sci. Publ., Hackensack, NJ, 2010.       
23 J. Marklof and A. Strömbergsson, The Boltzmann-Grad limit of the periodic Lorentz gas, Ann. of Math. (2), 174 (2011), 225-298.       
24 K. Matthies and F. Theil, Validity and non-validity of propagation of chaos, Analysis and Stochastics of growth processes and Interface Models, (2008), 101-119.       
25 K. Matthies and F. Theil, Validity and failure of the Boltzmann approximation of kinetic annihilation, Journal of Nonlinear Science, 20 (2010), 1-46.       
26 K. Matthies and F. Theil, A semigroup approach to the justification of kinetic theory, SIAM Journal on Mathematical Analysis, 44 (2012), 4345-4379.       
27 F. A. Molinet, Existence, uniqueness and properties of the solutions of the Boltzmann kinetic equation for a weakly ionized gas. i, Journal of Mathematical Physics, 18 (1977), 984-996.       
28 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, 1983.       
29 M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, 26 (2014), 1450001, 64 pp.       
30 H. Spohn, The Lorentz process converges to a random flight process, Comm. Math. Phys., 60 (1978), 277-290.       
31 H. Spohn, Kinetic equations from Hamiltonian dynamics: The Markovian approximations, In Kinetic theory and gas dynamics, volume 293 of CISM Courses and Lect., pages 183-211. Springer, Vienna, 1988.       
32 H. Spohn, Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics. Springer Berlin Heidelberg, 1991.
33 K. Uchiyama, Derivation of the Boltzmann equation from particle dynamics, Hiroshima Math. J., 18 (1988), 245-297.       
34 H. van Beijeren, O. E. Lanford, III, J. L. Lebowitz and H. Spohn, Equilibrium time correlation functions in the low-density limit, J. Statist. Phys., 22 (1980), 237-257.       

Go to top