`a`
Kinetic and Related Models (KRM)
 

A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures
Pages: 43 - 69, Issue 1, February 2018

doi:10.3934/krm.2018003      Abstract        References        Full text (459.7K)           Related Articles

Etienne Bernard - IGN-LAREG, Université Paris Diderot, Bâtiment Lamarck A, 5 rue Thomas Mann, Case courrier 7071, 75205 Paris Cedex 13, France (email)
Laurent Desvillettes - Université Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu | Paris Rive Gauche, UMR CNRS 7586, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 75013, Paris, France (email)
François Golse - Ecole Polytechnique, Centre de Mathématiques Laurent Schwartz, 91128 Palaiseau Cedex, France (email)
Valeria Ricci - Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy (email)

1 G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes, Arch. Rational Mech. Anal., 113 (1990), 209-259.       
2 C. Bardos, F. Golse and C. D. Levermore, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., 63 (1991), 323-344.       
3 E. Bernard, L. Desvillettes, F. Golse and V. Ricci, A derivation of the Vlasov-Navier-Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci., 15 (2017), 1703-1741.
4 J. A. Carrillo, Y.-P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 273-307.       
5 C. Cercignani, Theory and Applications of the Boltzmann Equation, Elsevier, New York, 1975.       
6 F. Charles, Kinetic modelling and numerical simulations using particle methods for the transport of dust in a rarefied gas, in Proceedings of the 26th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc. 1084 (2009), 409-414.
7 F. Charles, Modélisation Mathématique et Étude Numérique d'un Aérosol dans un Gaz Raréfié. Application à la Simulation du Transport de Particules de Poussière en Cas d'Accident de Perte de Vide dans ITER, Ph.D thesis, ENS Cachan, 2009.
8 F. Charles, S. Dellacherie and J. Segré, Kinetic modeling of the transport of dust particles in a rarefied atmosphere, Math. Models Methods Appl. Sci., 22 (2012), 1150021, 60 pp.       
9 Y.-P. Choi, Finite-time blow-up phenomena of Vlasov/Navier-Stokes equations and related systems, J. Math. Pures Appl., (2017).
10 Y.-P. Choi and B. Kwon, Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015), 3309-3336.       
11 D. Cioranescu and F. Murat, Un terme étrange venu d'ailleurs, (French) [A strange term brought from somewhere else], in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. 2, Research Notes in Mathematics, Pitman, 60 (1982), 98-138.       
12 P. Degond and B. Lucquin-Desreux, The asymptotics of collision operators for two species of particles of disparate masses, Math. Models Meth. Appl. Sci., 6 (1996), 405-436.       
13 B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999), 59-71.       
14 L. Desvillettes and F. Golse, A remark concerning the Chapman-Enskog asymptotics, in Advances in Kinetic Theory and Computing, Series on Advances in Mathematics for Applied Sciences, World Scientific Publications, Singapour, 22 (1994), 191-203.       
15 L. Desvillettes, F. Golse and V. Ricci, The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008), 941-967.       
16 L. Desvillettes and J. Mathiaud, Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations, J. Stat. Phys., 141 (2010), 120-141.       
17 M. A. Gallis, J. R. Torczyinski and D. J. Rader, An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte-Carlo method, Phys. Fluids, 13 (2001), 3482-3492.
18 D. Gèrard-Varet and M. Hillairet, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., 195 (2010), 375-407.       
19 F. Golse, Fluid dynamic limits of the kinetic theory of gases, in From Particle Systems to Partial Differential Equations, Springer Proc. Math. Stat., 75 (2013), 3-91.       
20 T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.       
21 T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.       
22 K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.       
23 M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009), 1357-1384.       
24 M. Hillairet, On the homogenization of the Stokes problem in a perforated domain, preprint, arXiv:1604.04379 [math.AP].
25 P.-E. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004), 415-432.       
26 S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure and Appl. Math., 35 (1982), 629-651.       
27 L. D. Landau and E. M. Lifshitz, Physical Kinetics. Course of Theoretical Physics, Vol. 10, Pergamon Press, 1981.       
28 P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models, Oxford University Press Inc., New York, 1996.       
29 P.-L. Lions and N. Masmoudi, Incompressible limit for a compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627.       
30 V. A. L'vov and E. Ya. Khruslov, Perturbation of a viscous incompressible fluid by small particles, (Russian), Theor. Appl. Quest. Differ. Equ. Algebra, 267 (1978), 173-177.       
31 G. de Rham, Differentiable Manifolds: Forms, Currents, Harmonic Forms, Springer-Verlag, Berlin, 1984.       
32 Y. Sone, Molecular Gas Dynamics. Theory, Techniques and Applications, Birkhäuser, Boston, 2007.       
33 S. Taguchi, On the drag exerted on the sphere by a slow uniform flow of a rarefied gas, in Proc. of the 29th Internat. Symp. on Rarefied Gas Dynamics, AIP Conf. Proc., 1628 (2014), 51-59.
34 S. Taguchi, Asymptotic theory of a uniform flow of a rarefied gas past a sphere at low Mach numbers, J. Fluid Mech., 774 (2015), 363-394.       
35 S. Takata, Y. Sone and K. Aoki, Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics, 824 (1993), 64-93.       
36 D. Wang and C. Yu, Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations, J. Diff. Equations, 259 (2015), 3976-4008.       
37 C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293.       

Go to top