`a`
Inverse Problems and Imaging (IPI)
 

Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors
Pages: 857 - 874, Issue 5, October 2017

doi:10.3934/ipi.2017040      Abstract        References        Full text (990.3K)           Related Articles

T. J. Sullivan - Free University of Berlin and Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany (email)

1 A. Achim, P. Tsakalides and A. Bezerianos, SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling, IEEE Trans. Geosci. Remote, 41 (2003), 1773-1784.
2 C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer, Berlin, third edition, 2006.       
3 V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, volume 164 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010.       
4 R. Bonic, Some properties of Hilbert scales, Proc. Amer. Math. Soc., 18 (1967), 1000-1003.       
5 J. M. Chambers, C. L. Mallows and B. W. Stuck, A method for simulating stable random variables, J. Amer. Statist. Assoc., 71 (1976), 340-344.       
6 O. Christensen and D. T. Stoeva, $p$-frames in separable Banach spaces, Adv. Comput. Math., 18 (2003), 117-126.       
7 M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, In R. Ghanem, D. Higdon, and H. Owhadi, editors, Handbook of Uncertainty Quantification, (2016), 311-428.
8 M. Dashti, S. Harris and A. M. Stuart, Besov priors for Bayesian inverse problems, Inverse Probl. Imaging, 6 (2012), 183-200.       
9 N. Hansen, F. Gemperle, A. Auger and P. Koumoutsakos, When do heavy-tail distributions help?, In T. P. Runarsson, H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley, and X. Yao, editors, Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings,Springer, Berlin, Heidelberg, (2006), 62-71.
10 B. Hosseini and N. Nigam, Well-posed Bayesian inverse problems: Priors with exponential tails, SIAM/ASA J. Uncertain. Quantif., 5 (2017), 436-465.       
11 J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, volume 160 of Applied Mathematical Sciences, Springer-Verlag, New York, 2005.       
12 C. Kraft, Some conditions for consistency and uniform consistency of statistical procedures, Univ. California Publ. Statist., 2 (1955), 125-141.       
13 M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), 1537-1563.       
14 M. Lassas, E. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Probl. Imaging, 3 (2009), 87-122.       
15 M. Ledoux and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1991.       
16 M. Markkanen, L. Roininen, J. M. J. Huttunen and S. Lasanen, Cauchy difference priors for edge-preserving Bayesian inversion with an application to X-ray tomography, 2016. arXiv:1603.06135v1.
17 J. P. Nolan, Stable Distributions - Models for Heavy Tailed Data, Birkhauser, Boston, 2017. In progress, Chapter 1 online at http://fs2.american.edu/jpnolan/www/stable/stable.html.
18 A. O'Hagan, Modelling with heavy tails, In Bayesian Statistics, 3 (Valencia, 1987), Oxford Sci. Publ., Oxford Univ. Press, New York, (1988), 345-359.       
19 H. Owhadi and C. Scovel, Qualitative robustness in Bayesian inference, 2016, arXiv:1411.3984v3.
20 M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964.       
21 M. Shao and C. Nikias, Signal processing with fractional lower order moments: Stable processes and their application, Proc. IEEE, 81 (1993), 986-1010.
22 T. Steerneman, On the total variation and Hellinger distance between signed measures; an application to product measures, Proc. Amer. Math. Soc., 88 (1983), 684-688.       
23 A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.       
24 A. N. Tikhonov, On the solution of incorrectly put problems and the regularisation method, In Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963), pages 261-265. Acad. Sci. USSR Siberian Branch, Moscow, 1963.       
25 P. Tsakalides, P. Reveliotis and C. L. Nikias, Scalar quantisation of heavy-tailed signals, IEE Proc. - Vis. Image Sign., 147 (2000), 475-484.
26 E. Tsionas, Monte Carlo inference in econometric models with symmetric stable distributions, J. Economet, 88 (1999), 365-401.       

Go to top