Discrete and Continuous Dynamical Systems - Series B (DCDS-B)

Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017199      Abstract        References        Full text (1131.4K)      

Giuseppe Viglialoro - Università di Cagliari, Dipartimento di Matematica e Informatica, V.le Merello 92, 09123 Cagliari, Italy (email)
Thomas E. Woolley - Cardiff School of Mathematics, Cardff University, Senghennydd Road, Cardiff, CF24 4AG, United Kingdom (email)

1 M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London. Math. Soc., 74 (2006), 453-474.       
2 J. L. Aragón, R. A. Barrio, T. E. Woolley, R. E. Baker and P. K. Maini, Nonlinear effects on turing patterns: Time oscillations and chaos, Phys. Rev. E, 86 (2012), 026201.
3 N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.       
4 J. Belmonte-Beitia, T. E. Woolley, J. G. Scott, P. K. Maini and E. A. Gaffney, Modelling biological invasions: Individual to population scales at interfaces, J. Theor. Biol., 334 (2013), 1 - 12, URL http://www.sciencedirect.com/science/article/pii/S0022519313002646.       
5 S. W. Cho, S. Kwak, T. E. Woolley, M. J. Lee, E. J. Kim, R. E. Baker, H. J. Kim, J. S. Shin, C. Tickle, P. K. Maini and H. S. Jung, Interactions between shh, sostdc1 and wnt signaling and a new feedback loop for spatial patterning of the teeth, Development, 138 (2011), 1807-1816.
6 T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057.       
7 M. A. Farina, M. Marras and G. Viglialoro, On explicit lower bounds and blow-up times in a model of chemotaxis, Discret. Contin. Dyn. Syst. Suppl, 409-417.       
8 D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159-177.       
9 D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Eqns., 215 (2005), 52-107.       
10 W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, T. Am. Math. Soc., 329 (1992), 819-824.       
11 E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
12 O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, in Translations of Mathematical Monographs, vol. 23, American Mathematical Society, 1988.       
13 J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equations., 258 (2015), 1158-1191.       
14 P. K. Maini, T. E. Woolley, R. E. Baker, E. A. Gaffney and S. S. Lee, Turing's model for biological pattern formation and the robustness problem, Interface Focus, 2 (2012), 487-496.
15 P. K. Maini, T. E. Woolley, E. A. Gaffney and R. E. Baker, The Once and Future Turing, chapter 15: Biological pattern formation, Cambridge University Press, 2016.
16 M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system, Discret. Contin. Dyn. Syst. Suppl, 809-916.       
17 M. Marras, S. Vernier-Piro and G. Viglialoro, Blow-up phenomena in chemotaxis systems with a source term, Math. Method. Appl. Sci., 39 (2016), 2787-2798.       
18 M. Marras and G. Viglialoro, Blow-up time of a general Keller-Segel system with source and damping terms, C. R. Acad. Bulg. Sci., 69 (2016), 687-696.       
19 J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, vol. 2, 3rd edition, Springer-Verlag, 2003.       
20 T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis intwo-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.       
21 K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal. Theory Methods Appl., 51 (2002), 119-144.       
22 K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvacioj., 44 (2001), 441-470.       
23 K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375.
24 L. E. Payne and J. C. Song, Lower bounds for blow-up in a model of chemotaxis, J. Math. Anal. Appl., 385 (2012), 672-676.       
25 L.-E. Persson and N. Samko, Inequalities and Convexity, in Operator Theory, Operator Algebras and Applications, Springer Basel, 2014, 279-306.       
26 M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equ., 103 (1993), 146-178.       
27 Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.       
28 Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Eqns., 252 (2012), 692-715.       
29 J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Commun. Part. Diff. Eq., 32 (2007), 849-877.       
30 P.-F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance mathématique et physique, 10 (1838), 113-121.
31 G. Viglialoro, On the blow-up time of a parabolic system with damping terms, C. R. Acad. Bulg. Sci., 67 (2014), 1223-1232.       
32 G. Viglialoro, Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary conditions, Diff. Int. Eqns., 29 (2016), 359-376.       
33 G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197-212.       
34 G. Viglialoro, Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal. Real World Appl., 34 (2017), 520-535.       
35 M. Winkler, Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.       
36 M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equations, 248 (2010), 2889-2905.       
37 M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Part. Diff. Eq., 35 (2010), 1516-1537.       
38 M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Method. Appl. Sci., 33 (2010), 12-24.       
39 M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.       
40 M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal. Theory Methods Appl., 72 (2010), 1044-1064.       
41 T. E. Woolley, Spatiotemporal Behaviour of Stochastic and Continuum Models for Biological Signalling on Stationary and Growing Domains, PhD thesis, University of Oxford, 2011.
42 T. E. Woolley, 50 Visions of Mathematics, chapter 48: Mighty Morphogenesis, Oxford Univ. Press, 2014.
43 T. E. Woolley, R. E. Baker, E. A. Gaffney and P. K. Maini, Stochastic reaction and diffusion on growing domains: Understanding the breakdown of robust pattern formation, Phys. Rev. E, 84 (2011), 046216.
44 T. E. Woolley, R. E. Baker, C. Tickle, P. K. Maini and M. Towers, Mathematical modelling of digit specification by a sonic hedgehog gradient, Dev. Dynam., 243 (2014), 290-298.

Go to top