`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017197      Abstract        References        Full text (443.0K)      

Hai-Yang Jin - Department of Mathematics, South China University of Technology, Guangzhou 510640, China (email)
Tian Xiang - Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China (email)

1 S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Commun. Pure Appl. Math., 12 (1959), 623-727.       
2 S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II, Commun. Pure Appl. Math., 17 (1964) , 35-92.       
3 N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Commun. Partial Differential Equations, 4 (1979), 827-868.       
4 N. Bellomo, A. Bellouquid, Y. S. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.       
5 A. Blanchet, J. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.       
6 T. Cieślak, Ph. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, equations, in Parabolic and Navier-Stokes Equations, in: Banach Center Publ. Polish Acad. Sci. Inst. Math., 81 (2008), 105-117.       
7 T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.       
8 T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113.       
9 E. Espejo and T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29-34.       
10 A. Friedman, Partial Differential Equations, Holt, Rinehart Winston, New York, 1969.       
11 K. Fujie, A. Ito, M. Winkler and T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169.       
12 D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math. Verien., 105 (2003), 103-165.       
13 S. Ishida, T. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36 (2013), 745-760.       
14 S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains J. Differential Equations, 256 (2014), 2993-3010.       
15 S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.       
16 S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic- parabolic type Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.       
17 K. Ishige, Ph. Laurençot and N. Mizoguchi, Blow-up behavior of solutions to a degenerate parabolic-parabolic Keller-Segel system, Math. Ann., 367 (2017), 461-499.       
18 H. Y. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478.       
19 H. Y. Jin and Z. Liu, Large time behavior of the full attraction-repulsion Keller-Segel system in the whole space, Appl. Math. Lett., 47 (2015), 13-20.       
20 H. Y. Jin and Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.       
21 H. Y. Jin and Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.       
22 P. Laurençot and N. Mizoguchi, Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 197-220.       
23 Y. Li and Y. X. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal. Real Word Appl., 30 (2016), 170-183.       
24 K. Lin and C. Mu, Global existence and convergence to steady states for an attraction-repulsion chemotaxis system Nonlinear Anal. Real World Appl., 31 (2016), 630-642.       
25 K. Lin, C. Mu and Y. Gao, Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion, J. Differential Equations, 261 (2016), 4524-4572.       
26 D. Liu and Y. S. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546.       
27 J. Liu and Z. A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn. Suppl.1, 6 (2012), 31-41.       
28 P. Liu, J. P. Shi and Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst.-Series B., 18 (2013), 2597-2625.       
29 M. Luca, A. Chavez-Ross, L. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, Microglia, and Alzheimer's disease senile plagues: is there a connection? Bull. Math. Biol., 65 (2003), 693-730.
30 T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math.Sci. Appl., 5 (1995), 581-601.       
31 T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac. Ser. Internat., 40 (1997), 411-433.       
32 T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.       
33 L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 20 (1966), 733-737.       
34 K. J. Painter and T. Hillen, Volume-filling quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543.       
35 R. Shi and W. Wang, Well-posedness for a model derived from an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 423 (2015), 497-520.       
36 Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.       
37 Y. S. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705-2722.       
38 Y. S. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.       
39 Y. S. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.       
40 M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925.       
41 M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.       
42 M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.       
43 H. Yu, Q. Guo and S. Zheng, Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system, Nonlinear Anal. Real World Appl., 34 (2017), 335-342.

Go to top