`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

On the scale dynamics of the tropical cyclone intensity
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017196      Abstract        References        Full text (1342.2K)      

Chanh Kieu - Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, United States (email)
Quan Wang - Department of Mathematics, Sichuan University, Sichuan Sheng, China (email)

1 B. R. Brown and G. J. Hakim, Variability and predictability of a three-dimensional hurricane in statistical equilibrium, J. Atmos. Sci., 70 (2013), 1806-1820.
2 G. H. Bryan and R. Rotunno, The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev., 137 (2009), 1770-1789.
3 J. G. Charney and A. Eliassen, On the growth of the hurricane depression, J. Atmos. Sci., 21 (1964), 68-75.
4 K. A. Emanuel, A statistical analysis of tropical cyclone intensity, Monthly Weather Review, 128 (2000), 1139-1152.
5 K. A. Emanuel, An air-sea interaction theory for tropical cyclones. part i: Steady-state maintenance, J. Atmos. Sci., 43 (1986), 585-605.
6 K. A. Emanuel, The Maximum Intensity of Hurricanes, J. Atmos. Sci., 45 (1986), 1143-1155.
7 Ferrara, M., F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson, and C. Kieu, Large-scale control of the lower stratosphere on variability of tropical cyclone intensity, Geophys. Res. Lett., 44 (2017), 4313-4323.
8 G. J. Hakim, The mean state of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci., 68 (2011), 1364-1376.
9 G. J. Hakim, The variability and predictability of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci., 70 (2013), 993-1005.
10 K. A. Hill and G. M. Lackmann, The impact of future climate change on TC intensity and structure: A downscaling approach, Journal of Climate, 24 (2011), 4644-4661.
11 C. Kieu, Hurricane maximum potential intensity equilibrium, Q.J.R. Meteorol. Soc., 141 (2015), 2471-2480.
12 C. Kieu and Z. Moon, Hurricane intensity predictability, Bull. Amer. Meteo. Soc., 97 (2016), 1847-1857.
13 C. Kieu, H. Chen and D. L. Zhang, An examination of the pressure-wind relationship for intense tropical cyclones, Wea. and Forecasting, 25 (2010), 895-907.
14 Y. Liu, D.-L. Zhang and M. K. Yau, A multiscale numerical study of hurricane andrew part II: Kinematics and inner-core structures, J. Atmos. Sci., 127 (1999), 2597-2616.
15 T. Ma, Topology of Manifolds, Science Press, Beijing, 2007.
16 J. W. Milnor, Topology from the Differentiable Viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va., 1965.       
17 Y. Ogura and N. A. Phillips, Scale analysis of deep and shallow convection in the atmophere, J. Atmos. Sci., 19 (1962), 173-179.
18 R. Rotunno and K. A. Emanuel, An airsea interaction theory for tropical cyclones. part ii: Evolutionary study using a nonhydrostatic axisymmetric numerical model, J. Atmos. Sci., 44 (1987), 542-561.
19 Shen, W., R. E. Tuleya, and I. Ginis, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Climate, 13(2000), 109-121.
20 R. K. Smith, G. Kilroy and M. T. Montgomery, Why do model tropical cyclones intensify more rapidly at low latitudes, Journal of the Atmospheric Sciences, 72 (2015), 1783-1840.
21 R. Wilhelmson and Y. Ogura, The pressure perturbation and the numerical modeling of a cloud, Journal of the Atmospheric Sciences, 29 (1972), 1295-1307.
22 H. E. Willoughby, Forced secondary circulations in hurricanes, J. Geophys. Res., 84 (1979), 3173-3183.
23 H. E. Willoughby, Gradient Balance in Tropical Cyclones, J. Atmos. Sci., 47 (1990), 265-274.

Go to top