`a`
Discrete and Continuous Dynamical Systems - Series B (DCDS-B)
 

Positive symplectic integrators for predator-prey dynamics
Page number are going to be assigned later 2017

doi:10.3934/dcdsb.2017185      Abstract        References        Full text (921.7K)      

Fasma Diele - Istituto per Applicazioni del Calcolo M.Picone, CNR, Bari, via Amendola 122/D, Italy (email)
Carmela Marangi - Istituto per Applicazioni del Calcolo M.Picone, CNR, Bari, via Amendola 122/D, Italy (email)

1 M. Beck and M. Gander, On the positivity of Poisson integrators for the Lotka-Volterra equations, BIT Numerical Mathematics, 55 (2015), 319-340.       
2 S. Blanes and F. Casas, Splitting methods in the numerical integration of non-autonomous dynamical systems, Journal of Physics A: Mathematical and General, 39 (2006), 5405-5423.       
3 S. Blanes, F. Casas, P. Chartier and A. Murua, Optimized high-order splitting methods for some classes of parabolic equations, Mathematics of Computiation, 82 (2013), 1559-1576.       
4 S. Blanes, F. Diele, C. Marangi and S. Ragni, Splitting and composition methods for explicit time dependence in separable dynamical systems, Journal of Computational and Applied Mathematics, 235 (2010), 646-659.       
5 F. Diele, I. Moret and S. Ragni, Error estimates for polynomial Krylov approximations to matrix functions, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1546-1565.       
6 F. Diele, C. Marangi and S. Ragni, Implicit-Symplectic Partitioned (IMSP) Runge-Kutta Schemes for Predator-Prey Dynamics, AIP Conference Proceedings, 1479 (2012), 1177-1180.
7 F. Diele, C. Marangi and S. Ragni, IMSP schemes for spatially explicit models of cyclic populations and metapopulation dynamics, Mathematics and Computers in Simulation, 100 (2014), 41-53.       
8 L. Einkemmer and A. Ostermann, Overcoming order reduction in reaction-diffusion splitting. Part 1: Dirichlet boundary conditions, SIAM Journal on Scientific Computing, 37 (2015), A1577-A1592.       
9 L. Einkemmer and A. Ostermann, Overcoming order reduction in diffusion-reaction splitting. Part 2: Oblique boundary conditions, SIAM Journal on Scientific Computing, 38 (2016), A3741-A3757.       
10 M. R. Garvie, Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB, Bulletin of Mathematical Biology, 69 (2007), 931-956.       
11 M. R. Garvie and M. Golinski, Metapopulation dynamics for spatially extended predator-prey interactions, Ecological Complexity, 7 (2010), 55-59.
12 M. R. Garvie and C. Trenchea, Finite element approximation of spatially extended predator-prey interactions with the Holling type II functional response, Numerische Mathematik, 107 (2007), 641-667.       
13 E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, Berlin, 2006.       
14 E. Hansen, F. Kramer and A. Ostermann, A second-order positivity preserving scheme for semilinear parabolic problems, Applied Numerical Mathematics, 62 (2012), 1428-1435.       
15 T. Koto, IMEX Runge-Kutta schemes for reaction-diffusion equations, Journal of Computational and Applied Mathematics, 215 (2008), 182-195.       
16 D. Lacitignola, F. Diele, C. Marangi and A. Provenzale, On the dynamics of a generalized predator-prey system with Z-type control, Mathematical Biosciences, 280 (2016), 10-23.       
17 J. Martinez-Linares, Phase space formulation of population dynamics in ecology, preprint, arXiv:q-bio.PE/1304.2324v.
18 A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Review, 44 (2002), 311-370.       
19 M. Mehdizadeh Khalsaraei and R. Shokri Jahandizi, Positivity-preserving nonstandard finite difference schemes for simulation of advection-diffusion reaction equation, Computational Methods for Differential Equations, 2 (2014), 256-267.       
20 J. H. Merkin, D. J. Needham and S. K. Scott, The Development of Travelling Waves in a Simple Isothermal Chemical System I. Quadratic Autocatalysis with Linear Decay, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 424 (1989), 187-209.       
21 R. E. Mickens, Nonstandard finite difference schemes for reaction-diffusion equations, Numerical Methods for Partial Differential Equations, 15 (1999), 201-214.       
22 M. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interactions, The American Naturalist, 97 (1963), 209-223.
23 V. Thomée, On Positivity Preservation in Some Finite Element Methods for the Heat Equation. In: Dimov I., Fidanova S., Lirkov I. (eds) Numerical Methods and Applications. NMA 2014. Lecture Notes in Computer Science, Springer, 8962 (2015), 13-24.       
24 E. H. Twizell, Y. Wang, W. G. Price and F. Fakhr, Finite-difference methods for solving the reaction-diffusion equations of a simple isothermal chemical system, Numerical Methods for Partial Differential Equations, 10 (1994), 435-454.       

Go to top