`a`
Journal of Industrial and Management Optimization (JIMO)
 

An optimized direction statistics for detecting and removing random-valued impulse noise
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017062      Abstract        References        Full text (1007.5K)      

Hao Yang - School of Computer Science, Chengdu University of Information Technology, No.24 Block 1, Xuefu Road, 610225, Chengdu, China (email)
Hang Qiu - School of Computer Science and Engineering, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 611731, Chengdu, China (email)
Leiting Chen - School of Computer Science and Engineering, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, 611731, Chengdu, China (email)

1 E. Abreu, M. Lightstone and S. K. Mitra, A new efficient approach for the removal of impulse noise from highly corrupted images, IEEE Transactions on Image Processing, 5 (1996), 1012-1025.
2 S. Akkoul, R. Lédée and R. Leconge, A new adaptive switching median filter, IEEE Signal Processing Letters, 17 (2010), 587-590.
3 G. Arce and J. Paredes, Recursive weighted median filters admitting negative weights and their optimization, IEEE Transactions on Image Processing, 48 (2000), 768-779.
4 A. S. Awad, Standard deviation for obtaining the optimal direction in the removal of impulse noise, IEEE Signal Processing Letters, 18 (2011), 407-410.
5 M. J. Black and A. Rangarajan, On the unification of line processes, outlier rejection, and robust statistics with applications in early vision, International Journal of Computer Vision, 19 (1996), 57-91.
6 A. C. Bovik, Handbook of Image and Video Processing, $2^{nd}$ edition, Academic press, 2010, New York, 2010.
7 D. R. K. Brownrigg, The weighted median filter, Communications of the ACM, 27 (1984), 807-818.
8 J.-F. Cai, R. H. Chan and C. Fiore, Minimization of a detail-preserving regularization functional for impulse noise removal, IEEE Transactions on Image Processing, 29 (2007), 79-91.       
9 R. H. Chan, C.-W. Ho and M. Nikolova, Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization, IEEE Transactions on Image Processing, 14 (2005), 1479-1485.
10 R. H. Chan, C.-W. Ho and C.-Y. Leung, Minimization of detail-preserving regularization functional by Newton's method with continuation, Proceedings - International Conference on Image Processing, ICIP, 1 (2005), 125-128.
11 R. H. Chan, C. Hu and M. Nikolova, An iterative procedure for removing random-valued impulse noise, IEEE Signal Processing Letters, 11 (2004), 921-924.
12 P. Charbonnier, L. Blanc-Féraud and G. Aubert, Deterministic edge-preserving regularization in computed imaging, IEEE Transactions on Image Processing, 6 (1997), 298-311.
13 T. Chen and H. R. Wu, Adaptive impulse detection using center-weighted medial filters, IEEE Transactions on Image Processing Letters, 8 (2001), 1-3.
14 Y. Dong, H. R. Chan and S. Xu, Edge-preserving regularization,Image denoising,Noise detector, Random-valued impulse noise, IEEE Transactions on Image Processing, 16 (2007), 1112-1120.       
15 Y. Dong and S. Xu, A new directional weighted median filter for removal of random-valued impulse noise, IEEE Transactions on Image Processing, 14 (2007), 193-196.
16 R. Garnett, T. Huegerich and C. Chui, A universal noise removal algorithm with an impulse detector, IEEE Transactions on Image Processing, 14 (2005), 1747-1754.
17 U. Ghaneka, A. K. Singh and and R. Pandey, A contrast enhancement-based filter for removal of random valued impulse noise, IEEE Signal Processing Letters, 17 (2010), 47-50.
18 R. Gonzalez and R. Woods, Digital Image Processing, $2^{nd}$ edition, Addision-Wesley Publishing Companyl, 2007.
19 P. J. Green, Bayesian reconstructions from emission tomography data using a modified EM algorithm, IEEE Transactions on Medical Imaging, 9 (1990), 84-93.
20 H. H. Dam, K. L. Teo and S. Nordebo, The dual parameterization approach to optimal least square FIR filter design subject to maximum error constraints, IEEE Transactions on Signal Processing, 48 (2000), 2314-2320.       
21 S. J. Ko and Y. H. Lee, Center weighted median filters and their applications to image enhancement, IEEE Transactions on Circuits and Systems, 38 (1991), 984-993.
22 S. Z. Li, On discontinuity-adaptive smoothness priors in computer vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (1995), 576-586.
23 L. Liu, C. P. Chen and Y. Zhou, A new weighted mean filter with a two-phase detector for removing impulse noise, Information Sciences, 315 (2015), 1-16.       
24 W. Luo, A new efficient impulse detection algorithm for the removal of impulse noise, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 88 (2005), 2579-2586.
25 M. Nikolova, A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20 (2004), 99-120.       
26 W. K. Pratt, Median Filtering, Image Proc Institute, University of Southern California, Los Angeles, Tech. Rep., 1975.
27 F. Russo, Hybrid neuro-fuzzy filter for impulse noise removal, Pattern Recognition, 32 (1999), 1843-1855.
28 T. Sun and Y. Neuvo, Detail-preserving median based filters in image processing, Pattern Recognition Letters, 15 (1994), 341-347.
29 K. Toh and N. Isa, Cluster-based adaptive fuzzy switching median filter for universal impulse noise reduction, IEEE Transactions on Consumer Electronics, 56 (2010), 2560-2568.
30 D. Van De Ville, M. Nachtegael and D. Van der Weken, Noise reduction by fuzzy image filtering, IEEE Transactions on Fuzzy Systems, 11 (2003), 429-436.
31 C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Transactions on Image Processing, 7 (1998), 813-824.       
32 B. Xiong and Z. Yin, A universal denoising framework with a new impulse detector and nonlocal means, IEEE Transactions on Image Processing, 21 (2012), 1663-1675.       
33 H. Xu, G. Zhu and H. Peng, Adaptive fuzzy switching filter for images corrupted by impulse noise, Pattern Recognition Letters, 25 (2004), 1657-1663.
34 M. E. Yüksel and A. Baştürk, A simple generalized neuro-fuzzy operator for efficient removal of impulse noise from highly corrupted digital images, AEU - International Journal of Electronics and Communications, 5 (1996), 1012-1025.
35 M. E. Yüksel, A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise, IEEE Transactions on Image Processing, 15 (2006), 928-936.
36 X.-Y. Zeng and L.-H. Yang, Mixed impulse and gaussian noise removal using detail-preserving regularization, Optical Engineering, 49 (2010), 097002-097002.

Go to top