`a`
Journal of Industrial and Management Optimization (JIMO)
 

Sparse Markowitz portfolio selection by using stochastic linear complementarity approach
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017059      Abstract        References        Full text (470.9K)      

Qiyu Wang - Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China (email)
Hailin Sun - School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, China (email)

1 D. Bertsimas and R. Shioda, Algorithms for cardinality-constrained quadratic optimization, Computational Optimization and Applications, 43 (2009), 1-22.       
2 W. Bian and X. Chen, Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation, IEEE Transactions on Neural Networks and Learning Systems, 25 (2014), 545-556.
3 P. Bonami and M. A. Lejeune, An exact solution approach for portfolio optimization problems under stochastic and integer constraints, Operations Research, 57 (2009), 650-670.       
4 J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.       
5 J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications, Nonlinear Analysis: Theory, Methods & Applications, 38 (1999), 687-773.       
6 J. Brodie, I. Daubechies, C. De Mol, D. Giannone and I. Loris, Sparse and stable markowitz portfolios, Proceedings of the National Academy of Sciences, 106 (2009), 12267-12272.
7 E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, 51 (2005), 4203-4215.       
8 F. Cesarone, A. Scozzari and F. Tardella, A new method for mean-variance portfolio optimization with cardinality constraints, Annals of Operations Research, 205 (2013), 213-234.       
9 C. Chen, X. Li, C. Tolman, S. Wang and Y. Ye, Sparse portfolio selection via quasi-norm regularization, preprint, arXiv:1312.6350.
10 X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Mathematical Programming, 134 (2012), 71-99.       
11 X. Chen, L. Guo, Z. Lu and J. Ye, An augmented Lagrangian method for non-Lipschitz nonconvex programming, SIAM Journal on Numerical Analysis, 55 (2017), 168-193.       
12 X. Chen and S. Xiang, Sparse solutions of linear complementarity problems, Mathematical Programming, 159 (2016), 539-556.       
13 R. W. Cottle, J. -S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, Boston, MA, 1992.       
14 V. DeMiguel, L. Garlappi, F. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812.
15 V. DeMiguel, L. Garlappi and R. Uppal, Optimal versus naive diversification: How inefficient is the $1/N$ portfolio strategy?, Review of Financial Studies, 22 (2009), 1915-1953.
16 G. F. Deng, W. T. Lin and C. C. Lo, Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization, Expert Systems with Applications, 39 (2012), 4558-4566.
17 D. W. Diamond and R. E. Verrecchia, Constraints on short-selling and asset price adjustment to private information, Journal of Financial Economics, 18 (1987), 277-311.
18 J. Gao and D. Li, Optimal cardinality constrained portfolio selection, Operations Research, 61 (2013), 745-761.       
19 H. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.
20 A. J McNeil, R. Frey and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press, 2015.       
21 R. C. Merton, On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics, 8 (1980), 323-361.
22 H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM Journal on Matrix Analysis and Applications, 28 (2006), 360-385.       
23 B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.       
24 R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-42.
25 W. F. Sharpe, The Sharpe ratio, The Journal of Portfolio Management, 21 (1994), 49-58.
26 A. Shleifer and R. W. Vishny, The limits of arbitrage, The Journal of Finance, 52 (1997), 35-55.
27 Y. Tian, S. Fang, Z. Deng and Q. Jin, Cardinality constrained portfolio selection problem: A completely positive programming approach, Journal of Indstrial and Management Optimization, 12 (2016), 1041-1056.       
28 F. Xu, Z. Lv and Z. Xu, An efficient optimization approach for a cardinality-constrained index tracking problem, Optimization Methods and Software, 31 (2016), 258-271.       
29 F. Xu, G. Wang and Y. Gao, Nonconvex L1/2 regularization for sparse portfolio selection, Pacific Journal of Optimization, 10 (2014), 163-176.       
30 H. Xu and D. Zhang, Monte Carlo methods for mean-risk optimization and portfolio selection, Computational Management Science, 9 (2012), 3-29.       
31 L. Xue, S. Ma and H. Zou, Positive-definite $l_{1}$-penalized estimation of large covariance matrices, Journal of the American Statistical Association, 107 (2012), 1480-1491.       
32 J. Ye, Constraint qualifications and necessary optimality conditions for optimization problems with variational inequality constraints, SIAM Journal on Optimization, 10 (2000), 943-962.       
33 X. Zheng, X. Sun and D. Li, Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: A semidefinite program approach, INFORMS Journal on Computing, 26 (2014), 690-703.       

Go to top