`a`
Journal of Industrial and Management Optimization (JIMO)
 

Ebola model and optimal control with vaccination constraints
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017054      Abstract        References        Full text (893.6K)      

Iván Area - Departamento de Matemática Aplicada II, E. E. Aeronáutica e do Espazo, Campus As Lagoas, Universidade de Vigo, 32004 Ourense, Spain (email)
Faïçal Ndaïrou - African Institute for Mathematical Sciences (AIMS-Cameroon), P.O. Box 608, Limbe Crystal Gardens, South West Region, Cameroon (email)
Juan J. Nieto - Departamento de Análisis Matemático, Estatística e Optimización, Facultad de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain (email)
Cristiana J. Silva - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal (email)
Delfim F. M. Torres - CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal (email)

1 M. D. Ahmad, M. Usman, A. Khan and M. Imran, Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination, Infect. Dis. Poverty, 5 (2016), p72.
2 C. L. Althaus, Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in west Africa, PLOS Currents Outbreaks, Edition 1, 2014.
3 I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh and A. Torres, On a fractional order Ebola epidemic model, Adv. Difference Equ., 2015 (2015), 12 pp.       
4 I. Area, J. Losada, F. Ndaïrou, J. J. Nieto and D. D. Tcheutia, Mathematical modeling of 2014 Ebola outbreak, Math. Method. Appl. Sci., (2015).
5 A. Atangana and E. F. Doungmo Goufo, On the mathematical analysis of Ebola hemorrhagic fever: Deathly infection disease in west african countries, BioMed Research International, 2014 (2014), Art. ID 261383, 7 pp.
6 M. H. A. Biswas, L. T. Paiva and M. R. de Pinho, A SEIR model for control of infectious diseases with constraints, Math. Biosci. Eng., 11 (2014), 761-784.       
7 M. A. Bwaka et al., Ebola hemorrhagic fever in Kikwit, Democratic Republic of the Congo: Clinical observations in 103 patients, J. Infect. Dis., 179 (1999), S1-S7.
8 L. Cesari, Optimization-Theory and Applications, Vol. 17 of Applications of Mathematics (New York), Springer-Verlag, New York, 1983.       
9 G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore and J. M. Hyman, The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, J. Theor. Biol., 229 (2004), 119-126.       
10 G. Chowell and H. Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): A review, BMC Med., 12 (2014), p196.
11 F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Vol. 264 of Graduate Texts in Mathematics, Springer, London, 2013.       
12 F. Clarke and M. R. de Pinho, Optimal control problems with mixed constraints, SIAM J. Control Optim., 48 (2010), 4500-4524.       
13 O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.       
14 S. F. Dowell, Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995, J. Infect. Dis., 179 (1999), S87-S91.
15 S. Duwal, S. Winkelmann, C. Schütte and M. von Kleist, Optimal treatment strategies in the context of 'Treatment for Prevention' against HIV-1 in resource-poor settings, PLoS Comput. Biol., 11 (2015), e1004200.
16 W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, Berlin-New York, 1975.       
17 S. K. Gire, A. Goba, K. G. Andersen, R. S. G. Sealfon, D. J. Park, L. Kanneh, et al., Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak, Science, 345 (2014), 1369-1372.
18 E. C. Hayden, World struggles to stop Ebola, Nature, 512 (2014), 355-356.
19 D. Hincapie-Palacio, J. Ospina and D. F. M. Torres, Approximated analytical solution to an Ebola optimal control problem, Int. J. Comput. Methods Eng. Sci. Mech., 17 (2016), 382-390.       
20 J. Kaufman, S. Bianco and A. Jones, https://wiki.eclipse.org/Ebola_Models.
21 A. Kaushik, S. Tiwari, R. D. Jayant, A. Marty and M. Nair, Towards detection and diagnosis of Ebola virus disease at point-of-care, Biosensors and Bioelectronics, 75 (2016), 254-272.
22 A. S. Khan et al., The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995, J. Infect. Dis., 179 (1999), S76-S86.
23 U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control Optim., 46 (2007), 1052-1079.       
24 J. Legrand, R. F. Grais, P. Y. Boelle, A. J. Valleron and A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiol. Infect., 135 (2007), 610-621.
25 P. E. Lekone and B. F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics, 62 (2006), 1170-1177.       
26 N. K. Martin, A. B. Pitcher, P. Vickerman, A. Vassall and M. Hickman, Optimal control of hepatitis C antiviral treatment programme delivery for prevention amongst a population of injecting drug users, PLoS One, 274 (2011), e22309, 17 pp.
27 R. Miller Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, In: Modeling paradigms and analysis of disease transmission models, Vol. 75 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci. Amer. Math. Soc., Providence, RI, 2010, 67-81.       
28 R. Ndambi et al., Epidemiologic and clinical aspects of the Ebola virus epidemic in Mosango, Democratic Republic of the Congo, 1995, J. Infect. Dis., 179 (1999), S8-S10.
29 G. A. Ngwa and M. I. Teboh-Ewungkem, A mathematical model with quarantine states for the dynamics of Ebola virus disease in human populations, Comput. Math. Methods Med., 2016 (2016), Art. ID 9352725, 29 pp.       
30 A. Papa, K. Tsergouli, D. Çaǧlayık, S. Bino, N. Como, Y. Uyar, et al., Cytokines as biomarkers of Crimean-Congo hemorrhagic fever, J. Med. Virol., 88 (2016), 21-27.
31 L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.       
32 A. Rachah and D. F. M. Torres, Mathematical modelling, simulation, and optimal control of the 2014 Ebola outbreak in West Africa, Discrete Dyn. Nat. Soc., 2015 (2015), Art. ID 842792, 9 pp.       
33 A. Rachah and D. F. M. Torres, Predicting and controlling the Ebola infection, Math. Method. Appl. Sci., (2016).
34 C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank and B. L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia, Technical report, PLOS Currents Outbreaks, 2014.
35 A. K. Rowe et al., Clinical, virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo, J. Infect. Dis., 179 (1999), S28-S35.
36 C. J. Silva and D. F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, Discrete Contin. Dyn. Syst., 35 (2015), 4639-4663.       
37 P. D. Walsh, R. Biek and L. A. Real, Wave-like spread of Ebola Zaire, PLoS Biology, 3 (2005), e371.

Go to top