`a`
Journal of Industrial and Management Optimization (JIMO)
 

A modified strictly contractive Peaceman-Rachford splitting method for multi-block separable convex programming
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017052      Abstract        References        Full text (462.0K)      

Su-Hong Jiang - School of Management and Engineering, Nanjing University, Nanjing 210093, China (email)
Min Li - School of Management and Engineering, Nanjing University, Nanjing 210093, China (email)

1 S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.
2 X. J. Cai, D. R. Han and X. M. Yuan, On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function, Computational Optimization and Applications, 66 (2017), 39-73.       
3 C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming Ser. A, 155 (2016), 57-79.       
4 C. H. Chen, Y. Shen and Y. F. You, On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstract and Applied Analysis, (2013), Article ID 183961, 7 pages.       
5 E. Corman and X. M. Yuan, A generalized proximal point algorithm and its convergence rate, SIAM Journal on Optimization, 24 (2014), 1614-1638.       
6 Y. H. Dai, D. R. Han, X. M. Yuan and W. X. Zhang, A sequential updating scheme of the Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.       
7 W. Deng, M.-J. Lai, Z. M. Peng and W. T. Yin, Parallel multi-block ADMM with $o(1/k)$ convergence, Journal of Scientific Computing, 71 (2017), 712-736.       
8 J. Douglas and H. H. Rachford, On the numerical solution of the heat conduction problem in $2$ and $3$ space variables, Transactions of the American Mathematical Society, 82 (1956), 421-439.       
9 D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems (eds. M. Fortin and R. Glowinski), North Holland, Amsterdam, The Netherlands, (1983), 299-331.
10 R. Glowinski, T. Kärkkäinen and K. Majava, On the convergence of operator-splitting methods, in Numerical Methods for Scientific Computing, Variational Problems and Applications (eds. Y. Kuznetsov, P. Neittanmaki and O. Pironneau), Barcelona, (2003).
11 R. Glowinski and A. Marrocco, Approximation par éléments finis d'ordre un et résolution par pénalisation-dualité d'une classe de problèmes non linéaires, R.A.I.R.O., 9 (1975), 41-76.       
12 D. R. Han, X. M Yuan, W. X. Zhang and X. J. Cai, An ADM-based splitting method for separable convex programming, Computational Optimization and Applications, 54 (2013), 343-369.       
13 B. S. He, H. Liu, J. W. Lu and X. M. Yuan, Application of the strictly contractive Peaceman-Rachford splitting method to multi-block seperable convex programming, manuscript, in Splitting Methods in Communication and Imaging, Science, and Engineering (eds. R. Glowinski, S. Osher and W. Yin), Springer, Switzerland, (2016), 195-235.
14 B. S. He, H. Liu, Z. R. Wang and X. M. Yuan, A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM Journal on Optimization, 24 (2014), 1101-1140.       
15 B. S. He, M. Tao and X. M. Yuan, A splitting method for separable convex programming, IMA Journal of Numerical Analysis, 35 (2015), 394-426.       
16 B. S. He, M. Tao and X. M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.       
17 B. S. He and X. M. Yuan, On the $O(1/n)$ convergence rate of Douglas-Rachford alternating direction method, SIAM Journal on Numerical Analysis, 50 (2012), 700-709.       
18 B. S. He and X. M. Yuan, On nonergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numerische Mathematik, 30 (2015), 567-577.       
19 M. Li, D. F. Sun and K.-C. Toh, A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block, Asia Pacific Journal of Operational Research, 32 (2015), 1550024, 19 pp.       
20 X. D. Li, D. F. Sun and K.-C. Toh, A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming Ser. A, 155 (2016), 333-373.       
21 T. Y. Lin, S. Q. Ma and S. Z. Zhang, On the global linear convergence of the ADMM with multi-block variables, SIAM Journal on Optimization, 25 (2015), 1478-1497.       
22 T. Y. Lin, S. Q. Ma and S. Z. Zhang, On the sublinear convergence rate of multi-block ADMM, Journal of the Operations Research Society of China, 3 (2015), 251-274.       
23 P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979.       
24 S. Q. Ma, Alternating proximal gradient method for convex minimization, Journal of Scientific Computing, 68 (2016), 546-572.       
25 Y. E. Nesterov, Gradient methods for minimizing composite objective function, Mathematical Programming Ser. B, 140 (2013), 125-161.       
26 M. Patriksson, A survey on the continuous nonlinear resource allocation Problem, European Journal of Operations Research, 185 (2008), 1-46.       
27 D. H. Peaceman and H. H. Rachford, The numerical solution of parabolic elliptic differential equations, SIAM Journal on Applied Mathematics, 3 (1955), 28-41.       
28 Y. G. Peng, A. Ganesh, J. Wright, W. L. Xu and Y. Ma, Robust alignment by sparse and low-rank decomposition for linearly correlated images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 2233-2246.
29 M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM Journal on Optimization, 21 (2011), 57-81.       
30 H. Uzawa, Market mechanisms and mathematical programming, Econometrica, 28 (1960), 872-881.       

Go to top