Mathematical Biosciences and Engineering (MBE)

Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth
Pages: 485 - 505, Issue 2, April 2018

doi:10.3934/mbe.2018022      Abstract        References        Full text (703.3K)           Related Articles

Markus Thäter - Chair of Mathematics in Engineering Sciences, University of Bayreuth, Bayreuth, D 95440, Germany (email)
Kurt Chudej - Chair of Mathematics in Engineering Sciences, University of Bayreuth, Bayreuth, D 95440, Germany (email)
Hans Josef Pesch - University of Bayreuth, Chair of Mathematics in Engineering Sciences, Bayreuth, D 95440, Germany (email)

1 F. Bauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Part IV, $2^{nd}$ edition, Springer-Verlag, New York, 2012.       
2 M. H. A. Biswas, L. T. Paiva and MdR. de Pinho, A SEIR model for control of infectious diseases with constraints, Mathematical Biosciences and Engineering, 11 (2014), 761-784.       
3 A. E. Bryson, W. F. Denham and S. E. Dreyfus, Optimal Programming Problems with Inequality Constraints I, AIAA Journal, 1 (1963), 2544-2550.       
4 O. Diekmann, H. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princton University Press, Princton, 2013.       
5 R. Fourer, D. Gay and B. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Pacific Grove, 2002.
6 W. E. Hamilton, On nonexistence of boundary arcs in control problems with bounded state variables, IEEE Transactions on Automatic Control, AC-17 (1972), 338-343.
7 R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995), 181-218.       
8 K. Ito and K. Kunisch, Asymptotic properties of receding horizont optimal control problems, SIAM J. Control Optim., 40 (2002), 1585-1610.       
9 D. H. Jacobson, M. M. Lele and J. L. Speyer, New necessary conditions of optimality for control problems with state variable inequality constraints, Journal of Mathematical Analysis and Applications, 35 (1971), 255-284.       
10 I. Kornienko, L. T. Paiva and MdR. de Pinho, Introducing state constraints in optimal control for health problems, Procedia Technology, 17 (2014), 415-422.
11 V. Lykina, Beiträge zur Theorie der Optimalsteuerungsprobleme mit unendlichem Zeithorizont, Dissertation, Brandenburgische Technische Universität Cottbus, Germany, 2010, http://opus.kobv.de/btu/volltexte/2010/1861/pdf/dissertationLykina.pdf.
12 V. Lykina, S. Pickenhain and M. Wagner, On a resource allocation model with infinite horizon, Applied Mathematics and Computation, 204 (2008), 595-601.       
13 H. Maurer and H. J. Pesch Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics, Applied Mathematics and Computation, 204 (2008), 568-579.       
14 H. Maurer and MdR. de Pinho, Optimal control of epidemiological SEIR models with $L^1$-objectives and control-state constraints, Pac. J. Optim., 12 (2016), 415-436.       
15 J. D. Murray, Mathematical Biology: I An Introduction, $3^{rd}$ edition, Springer-Verlag, New York, 2002.       
16 J. D. Murray, Mathematical Biology: II Spatial Models and Biomedical Applications, $3^{rd}$ edition, Springer-Verlag, New York, 2003.       
17 R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.       
18 H. J. Pesch, A practical guide to the solution of real-life optimal control problems, Control and Cybernetics, 23 (1994), 7-60.       
19 S. Pickenhain, Infinite horizon optimal control problems in the light of convex analysis in Hilbert Spaces, Set-Valued and Variational Analysis, 23 (2015), 169-189.       
20 M. Plail and H. J. Pesch, The Cold War and the maximum principle of optimal control, Doc. Math., 2012, Extra vol.: Optimization stories, 331-343.       
21 H. Schättler, U. Ledzewicz and H. Maurer, Sufficient conditions for strong local optimality in optimal control problems of $L:2$-type objectives and control constraints, Dicrete and Continuous Dynamical Systems Series B, 19 (2014), 2657-2679.       
22 M. Thäter, Restringierte Optimalsteuerungsprobleme bei Epidemiemodellen, Master Thesis, Department of Mathematics, University of Bayreuth in Bayreuth, 2014.
23 P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance Mathématique et Physique, 10 (1838), 113-121.
24 A. Wächter, An Interior Point Algorithm for Large-Scale Nonlinear Optimization with Applications in Process Engineering, PhD Thesis, Carnegie Mellon University in Pittsburgh, 2002.
25 A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.       
26 D. Wenzke, V. Lykina and S. Pickenhain, State and time transformations of infinite horizon optimal control problems, Contemporary Mathematics Series of The AMS, 619 (2014), 189-208.       

Go to top