`a`
Mathematical Biosciences and Engineering (MBE)
 

Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma
Pages: 407 - 428, Issue 2, April 2018

doi:10.3934/mbe.2018018      Abstract        References        Full text (705.6K)           Related Articles

Eduardo Ibargüen-Mondragón - Departamento de Matemáticas y Estadística, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Calle 18 Cra 50, Pasto, Colombia (email)
Lourdes Esteva - Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México DF, Mexico (email)
Edith Mariela Burbano-Rosero - Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Nariño, Calle 18 Cra 50, Pasto, Colombia (email)

1 J. Alavez, R. Avendao, L. Esteva, J. A. Flores, J. L. Fuentes-Allen, G. Garca-Ramos, G. Gmez and J. Lpez Estrada, Population dynamics of antibiotic resistant M. tuberculosis, Math Med Biol, 24 (2007), 35-56.
2 R. Antia, J. C. Koella and V. Perrot, Model of the Within-host dynamics of persistent mycobacterial infections, Proc R Soc Lond B, 263 (1996), 257-263.
3 M. A. Behr and W. R. Waters, Is tuberculosis a lymphatic disease with a pulmonary portal?, Lancet, 14 (2004), 250-255.
4 S. M. Blower and T. Chou, Modeling the emergence of the hot zones: Tuberculosis and the amplification dynamics of drug resistance, Nat Med, 10 (2004), 1111-1116.
5 C. Castillo-Chávez and B. Song, Dynamical models of tuberculosis and their applications, Math Biosci Eng, 1 (2004), 361-404.       
6 T. Cohen and M. Murray, Modelling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness, Nat Med, 10 (2004), 1117-1121.
7 A. M. Cooper, Cell-mediated immune responses in tuberculosis, Annu Rev Immunol, 27 (2009), 393-422.
8 C. Dye and M. A. Espinal, Will tuberculosis become resistant to all antibiotics?, Proc R Soc Lond B, 268 (2001), 45-52.
9 F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing, Providence, RI, 1998.       
10 E. Guirado and L. S. Schlesinger, Modeling the Mycobacterium tuberculosis granuloma-the critical battlefield in host immunity and disease, Frontiers in Immunology, 4 (2013), 1-7.
11 T. Gumbo, A. Louie, M. R. Deziel, L. M. Parsons, M. Salfinger and G. L. Drusano, Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling, J Infect Dis, 190 (2004), 1642-1651.
12 E. G. Hoal-Van Helden, D. Hon, L. A. Lewis, N. Beyers and P. D. Van Helden, Mycobacterial growth in human macrophages: Variation according to donor, inoculum and bacterial strain, Cell Biol Int, 25 (2001), 71-81.
13 E. Ibargüen-Mondragón, L. Esteva and L. Chávez-Galán, A mathematical model for cellular immunology of tuberculosis, Math Biosci Eng, 8 (2011), 973-986.       
14 E. Ibargüen-Mondragón and L. Esteva, Un modelo matemático sobre la dinámica del Mycobacterium tuberculosis en el granuloma, Revista Colombiana de Matemáticas, 46 (2012), 39-65.       
15 E. Ibargüen-Mondragón, J. P. Romero-Leiton, L. Esteva and E. M. Burbano-Rosero, Mathematical modeling of bacterial resistance to antibiotics by mutations and plasmids, J Biol Syst, 24 (2016), 129-146.       
16 E. Ibargüen-Mondragón, S. Mosqueraa, M. Cerón, E. M. Burbano-Rosero, S. P. Hidalgo-Bonilla, L. Esteva and J. P. Romero-Leiton, Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations, BioSystems, 117 (2014), 60-67.
17 S. Kaufmann, How can immunology contribute to the control of tuberculosis?, Nat Rev Immunol, 1 (2001), 20-30.
18 D. Kirschner, Dynamics of Co-infection with M. tuberculosis and HIV-1, Theor Popul Biol, 55 (1999), 94-109.
19 H. Koppensteiner, R. Brack-Werner and M. Schindler, Macrophages and their relevance in Human Immunodeficiency Virus Type I infection, Retrovirology, 9 (2012), p82.
20 Q. Li, C. C. Whalen, J. M. Albert, R. Larkin, L. Zukowsy, M. D. Cave and R. F. Silver, Differences in rate and variability of intracellular growth of a panel of Mycobacterium tuberculosis clinical isolates within monocyte model, Infect Immun, 70 (2002), 6489-6493.
21 G. Magombedze, W. Garira and E. Mwenje, Modellingthe human immune response mechanisms to mycobacterium tuberculosis infection in the lungs, Math Biosci Eng, 3 (2006), 661-682.       
22 S. Marino and D. Kirschner, The human immune response to the Mycobacterium tuberculosis in lung and lymph node, J Theor Biol, 227 (2004), 463-486.
23 J. Murphy, R. Summer, A. A. Wilson, D. N. Kotton and A. Fine, The prolonged life-span of alveolar macrophages, Am J Respir Cell Mol Biol, 38 (2008), 380-385.
24 G. Pedruzzi, K. V. Rao and S. Chatterjee, Mathematical model of mycobacterium-host interaction describes physiology of persistence, J Theor Biol, 376 (2015), 105-117.       
25 L. Ramakrishnan, Revisiting the role of the granuloma in tuberculosis, Nat Rev Immunol, 12 (2012), 352-366.
26 D. Russell, Who puts the tubercle in tuberculosis?, Nat Rev Microbiol, 5 (2007), 39-47.
27 A. Saltelli, M. Ratto, S. Tarantola and F. Campolongo, Sensitivity analysis for chemical models, Chem Rev, 105 (2005), 2811-2828.
28 M. Sandor, J. V. Weinstock and T. A. Wynn, Granulomas in schistosome and mycobacterial infections: A model of local immune responses, Trends Immunol, 24 (2003), 44-52.
29 R. Shi, Y. Li and S. Tang, A mathematical model with optimal constrols for cellular immunology of tuberculosis, Taiwan J Math, 18 (2014), 575-597.       
30 D. Sud, C. Bigbee, J. L. Flynn and D. E. Kirschner, Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection, J Immunol, 176 (2006), 4296-4314.
31 D. F. Tough and J. Sprent, Life span of naive and memory T cells, Stem Cells, 13 (1995), 242-249.
32 M. C. Tsai, S. Chakravarty, G. Zhu, J. Xu, K. Tanaka, C. Koch, J. Tufariello, J. Flynn and J. Chan, Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension, Cell Microbiol, 8 (2006), 218-232.
33 S. Umekia, Y. Kusunokia, et al., Lifespan of human memory T-cells in the absence of T-cell receptor expression, Immunol Lettt, 62 (1998), 99-104.
34 L. Westera, J. Drylewicz, et al., Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans, BLOOD, 122 (2013), 2205-2212.
35 J. E. Wigginton and D. E. Kischner, A model to predict cell mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis, J Immunol, 166 (2001), 1951-1967.
36 Word Health Organization (WHO), Global tuberculosis report 2015, 2003. Available from: http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf.
37 Word Health Organization (WHO),Global tuberculosis report 2016, 2003. Available from: http://apps.who.int/iris/bitstream/10665/250441/1/9789241565394-eng.pdf?ua=1.
38 M. Zhang, J. Gong, Z. Yang, B. Samten, M. D. Cave and P. F. Barnes, Enhanced capacity of a widespread strain of Mycobacterium tuberculosis to grow in human monocytes, J Infect Dis, 179 (1998), 1213-1217.
39 M. Zhang, S. Dhandayuthapani and V. Deretic, Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid, Proc Natl Acad Sci U S A, 93 (1996), 13212-13216.

Go to top