Inverse Problems and Imaging (IPI)

A wavelet frame approach for removal of mixed gaussian and impulse noise on surfaces
Pages: 783 - 798, Issue 5, October 2017

doi:10.3934/ipi.2017037      Abstract        References        Full text (4267.6K)           Related Articles

Jianbin Yang - College of Science, Hohai University, No.8 Focheng West Road, Jiangning, Nanjing, 211100, Jiangsu Province, China (email)
Cong Wang - College of Science, Hohai University, No.8 Focheng West Road, Jiangning, Nanjing, Jiangsu Province, 211100, China (email)

1 P. Alfeld, M. Neamtu and L. L. Schumaker, Fitting scattered data on sphere-like surfaces using spherical splines, J. Comput. Appl. Math., 73 (1996), 5-43.       
2 M. Botsch, L. Kobbelt, M. Pauly, P. Alliez and B. Lévy, Polygon Mesh Processing, A. K. Peters, Ltd, 2010.
3 J. F. Cai, S. Osher and Z. Shen, Split bregman methods and frame based image restoration, Multiscale Model. Simul.: A SIAM Interdiscip. J., 8 (2009), 337-369.       
4 J. F. Cai and Z. Shen, Framelet based deconvolution, J. Comput. Math., 28 (2010), 289-308.       
5 U. Clarenz, U. Diewald and M. Rumpf, Anisotropic geometric diffusion in surface processing, in Proceedings of the Conference on Visualization 2000, (2000), 397-405.
6 M. Desbrun, M. Meyer, P. Schröder and A. H. Barr, Implicit fairing of arbitrary meshes using diffusion and curvature flow, in Proceedings of SIGGRAPH 1999, (1999), 317-324.
7 M. Desbrun, M. Meyer, P. Schröder and A. H. Barr, Anisotropic feature-preserving denoising of height fields and bivariate data, in Proceedings of the Graphics Interface 2000 Conference, (2000), 145-152.
8 B. Dong, Sparse representation on graphs by tight wavelet frames and applications. Appl. Comput. Harmon. Anal., 42 (2017), 452-479.       
9 B. Dong, Q. T. Jiang, C. Q. Liu and Z. Shen, Multiscale representation of surfaces by tight wavelet frames with applications to denoising, Appl. Comput. Harmon. Anal., 41 (2016), 561-589.       
10 B. Dong and Z. Shen, MRA-based wavelet frames and applications, IAS/Park CityMathematics Series, 19 (2010), 9-158.       
11 M. Elsey and S. Esedoglu, Analogue of the total variation denoising model in the context of geometry processing, Multiscale Model. Simul., 7 (2009), 1549-1573.       
12 Z. T. Fan, H. Ji and Z. Shen, Dual Graminan analysis: Duality and unitary extension principle, Math. Comp., 85 (2016), 239-270.       
13 S. Fleishman, I. Drori and D. Cohen-Or, Bilateral mesh denoising, ACM Trans. Graph., 22 (2003), 950-953.
14 Z. Gong, Augmented Lagrangian Based Algorithms for Convex Optimization Problems with Non-separable $l_1$-regularization, Ph.D. thesis, National University of Singapore, 2013.
15 Z. Gong, Z. Shen and K. Toh, Image restoration with mixed or unknown noises, Multiscale Model. Simul., 12 (2014), 458-487.
16 H. Hoppe, T. Derose, T. Duchamp, M. Halstead, H. Jin, J. Mcdonald, J. Schweitzer and W. Stuetzle, Piecewise smooth surface reconstruction, in Proceedings of the 21st annual conference on Computer graphics and interactive techniques, (1994), 295-302.
17 T. Jones, F. Durand and M. Desbrun, Non-iterative, feature-preserving mesh smoothing, ACM Trans. Graph., 22 (2003), 943-949.
18 J. Li, Z. Shen, R. J. Yin and X. Q. Zhang, A reweighted $l^2$ method for image restoration with poisson and mixed poisson-gaussian noise, Inverse Probl. Imaging., 9 (2015), 875-894.       
19 S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic press, 2009.       
20 Y. Nesterov, A method of solving a convex programming problem with convergence rate $O(1/k^2)$, Soviet Math. Dokl, 27 (1983), 372-376.
21 R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), 97-116.       
22 A. Ron and Z. Shen, Affine systems in $L_2(\mathbbR^d)$: The analysis of the analysis operator, J. Funct. Anal., 148 (1997), 408-447.       
23 L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.       
24 R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha and M. Beetz, Towards 3D Point cloud based object maps for household environments, Rob. Auton. Syst., 56 (2008), 927-941.
25 Y. Shen, B. Han and E. Braverman, Removal of mixed gaussian and impulse noise using directional tensor product complex tight framelets, J. Math. Imaging Vis., 54 (2016), 64-77.       
26 X. F. Sun, P. L. Rosin, R. R. Martin and F. C. Langbein, Fast and effective feature-preserving mesh denoising, IEEE Trans. Vis. Comput. Graphics, 13 (2007), 925-938.
27 T. Tasdizen, R. Whitaker, P. Burchard and S. Osher, Geometric surface processing via normal maps, ACM Trans. Graph., 22 (2003), 1012-1033.
28 C. Wu, J. Zhang, Y. Duan and X. C. Tai, Augmented lagrangian method for total variation based image restoration and segmentation over triangulated surfaces, J. Sci. Comput., 50 (2012), 145-166.       
29 M. Yan, Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting, SIAM J. Imaging Sci., 6 (2013), 1227-1245.       
30 J. Yang, D. Stahl and Z. Shen, An analysis of wavelet frame based scattered data reconstruction, Appl. Comput. Harmon. Anal., 42 (2017), 480-507.       
31 H. Zhang, C. Wu, J. Zhang and J. Deng, Variational mesh denoising using total variation and piecewise constant function space, IEEE Trans. Vis. Comput. Graphics, 21 (2015), 873-886.

Go to top