Dynamics of epidemic models with asymptomatic infection and seasonal succession
Pages: 1407  1424,
Issue 5/6,
October/December
2017
doi:10.3934/mbe.2017073 Abstract
References
Full text (476.4K)
Related Articles
Yilei Tang  School of Mathematical Science, Shanghai Jiao Tong University, Shanghai 200240, China (email)
Dongmei Xiao  School of Mathematical Science, Shanghai Jiao Tong University, Shanghai 200240, China (email)
Weinian Zhang  Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China (email)
Di Zhu  School of Mathematical Science, Shanghai Jiao Tong University, Shanghai 200240, China (email)
1 
M. E. Alexander and S. M. Moghadas, Bifurcation analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 17941816. 

2 
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, New York, 1991. 

3 
J. Arino, F. Brauer, P. van den Driessche, J. Watmoughd and J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2008), 118130. 

4 
L. Bourouiba, A. Teslya and J. Wu, Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains: insights from dynamic modeling, J. Theor. Biol., 271 (2011), 181201. 

5 
F. Brauer and C. CastilloChávez, Mathematical Models in Population Biology and Epidemiology, SpringerVerlag, New York, 2001. 

6 
J. M. Cushing, A juvenileadult model with periodic vital rates, J. Math. Biol., 53 (2006), 520539. 

7 
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in themodels for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365382. 

8 
K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, Lecture Notes in Biomath, 11 (1976), 115, BerlinHeidelbergNew York: Springer. 

9 
D. J. D. Earn, P. Rohani, B. M. Bolker and B. T. Grenfell, A simple model for complex dynamical transitions in epidemics, Science, 287 (2000), 667670. 

10 
Z. Guo, L. Huang and X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 9 (2012), 97110. 

11 
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599653. 

12 
Y. Hsieh, J. Liu, Y. Tzeng and J. Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, J. Theor. Biol., 356 (2014), 2029. 

13 
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. R. Soc. London A: Math., 115 (1927), 700721. 

14 
I. M. Longini, M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidemiol., 159 (2004), 623633. 

15 
R. Olinky, A. Huppert and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol. 56 (2008), 827839. 

16 
I. B. Schwartz, Small amplitude, long periodic out breaks in seasonally driven epidemics, J. Math. Biol., 30 (1992), 473491. 

17 
H. L. Smith, Multiple stable subharmonics for a periodic epidemic model, J. Math. Biol., 17 (1983), 179190. 

18 
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Univ. Press, 1995. 

19 
L. Stone, R. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533536. 

20 
Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621639. 

21 
S. Towers and Z. Feng, Social contact patterns and control strategies for influenza in the elderly, Math. Biosci., 240 (2012), 241249. 

22 
S. Towers, K. Vogt Geisse, Y. Zheng and Z. Feng, Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model, J. Theor. Biol., 289 (2011), 259268. 

23 
P. Van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 

24 
W. Wang and S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775793. 

25 
W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699717. 

26 
D. Xiao, Dynamics and bifurcations on a class of population model with seasonal constantyield harvesting, Discrete Contin. Dynam. Syst. B, 21 (2016), 699719. 

27 
D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419429. 

28 
F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496516. 

29 
X. Zhao, Dynamical Systems in Population Biology, SpringerVerlag, New York, 2003. 

Go to top
