Global dynamics of a vectorhost epidemic model with age of infection
Pages: 1159  1186,
Issue 5/6,
October/December
2017
doi:10.3934/mbe.2017060 Abstract
References
Full text (533.6K)
Related Articles
YanXia Dang  Department of Public Education, Zhumadian Vocational and Technical College, Zhumadian 463000, China (email)
ZhiPeng Qiu  School of Science, Nanjing University of Science and Technology, Nanjing 210094, China (email)
XueZhi Li  Department of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000, China (email)
Maia Martcheva  Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, Gainesville, FL 326118105, United States (email)
1 
http://www.who.int/mediacentre/factsheets/fs387/en/. 

2 
http://www.shanghaidaily.com/national/Guangdongsees1074newdenguecases/shdaily.shtml. 

3 
R. M. Anderson and R. M. May, Infectious Disease of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991. 

4 
C. Bowman, A. B. Gumel, J. Wu, P. V. Driessche and H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005), 11071133. 

5 
F. Brauer, P. V. Driessche and J. Wu, eds., Mathematical Epidemiology, Lecture Notes in Math, Springer, Berlin, 2008. 

6 
F. Brauer, Z. S. Shuai and P. V. Driessche, Dynamics of an ageofinfection cholera model, Math. Biosci. Eng., 10 (2013), 13351349. 

7 
S. Busenberg, K. Cooke and M. Iannelli, Endemic threshold and stability in a class of agestructured epidemics, SIAM J. Appl. Math., 48 (1988), 13791395. 

8 
S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behavior of an agestructured epdiemic model, SIAM J. Math. Anal., 22 (1991), 10651080. 

9 
S. Busenberg, M. Iannelli and H. Thieme, Dynamics of an age structured epidemic model, in: S.T. Liao, Y.Q. Ye, T.R. Ding (Eds.), Dynamical Systems, Nankai Series in Pure, Applied Mathematics and Theoretical Physics, World Scientific, Singapore, 4 (1993), 119. 

10 
C. CastilloChavez and Z. Feng, Global stability of an agestructure model for TB and its applications to optimal vaccination strategies, Math. Biosci., 151 (1998), 135154. 

11 
Y. Cha, M. Iannelli and F. A. Milner, Existence and uniqueness of endemic states for the agestructured SIR epidemic model, Math. Biosci., 150 (1998), 177190. 

12 
Z. L. Feng and J. X. VelascoHernandez, Competitive exclusion in a vectorhost model for the dengue fever, J. Math. Biol., 35 (1997), 523544. 

13 
Z. Feng, W. Huang and C. CastilloChavez, Global behavior of a multigroup SIS epidemic model with age structure, J. Diff. Equs., 218 (2005), 292324. 

14 
H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup sir epidemic models, Can. Appl. Math. Q., 14 (2006), 259284. 

15 
H. Guo, M. Y. Li and Z. Shuai, A graphtheoretic approach to the method of global lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 27932802. 

16 
H. Inaba and H. Sekine, A mathematical model for chagas disease with infectionagedependent infectivity, Math, Biosci., 190 (2004), 3969. 

17 
H. Inaba, Mathematical analysis of an agestructured SIR epidemic model with vertical transmission, Dis. Con. Dyn. Sys. B, 6 (2006), 6996. 

18 
M. Y. Li and Z. Shuai, Globalstability problem for coupled systems of differential equations on networks, J. Diff. Equs., 248 (2010), 120. 

19 
A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. Roy. Soc. Lond. B., 268 (2001), 985993. 

20 
A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001), 5971. 

21 
P. Magal, C. C. McCluskey and G.Webb, Lyapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 11091140. 

22 
P. Magal and C. McCluskey, Two group infection age model: An application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 10581095. 

23 
M. Martcheva and F. Hoppensteadt, India's approach to eliminating plasmodium falciparum malaria: A Modeling perspective, J. Biol. Systems, 18 (2010), 867891. 

24 
M. Martcheva and X. Z. Li, Competitive exclusion in an infectionage structured model with environmental transmission, Math. Anal. Appl., 408 (2013), 225246. 

25 
M. Martcheva and H. R. Thieme, Progression age enhanced backward bifurcation in an epidemic model with superinfection, J. Math. Biol., 46 (2003), 385424. 

26 
G. C. Pachecoa, L. Estevab, J. A. MontanoHirosec and C. Vargasd, Modelling the dynamics of West Nile Virus, Bull. Math. Biol., 67 (2005), 11571172. 

27 
Z. P. Qiu, Q. K. Kong, X. Z. Li and M. M. Martcheva, The vectorhost epidemic model with multiple strains in a patchy environment, J. Math. Anal. Appl., 405 (2013), 1236. 

28 
Z. P. Qiu and Z. L. Feng, Transmission dynamics of an influenza model with age of infection and antiviral treatment, J. Dyn. Diff. Equat., 22 (2010), 823851. 

29 
H. R. Thieme and C. CastilloChavez, How may infectionagedependent infectivity affect the dynamics if HIV/AIDs?, SIAM J. Appl. Math., 53 (1993), 14471479. 

30 
J. Tumwiine, J. Y. Mugisha and L. S. Luboobi, A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity, Appl. Math. Comput., 189 (2007), 19531965. 

31 
J. X. Yang, Z. P. Qiu and X. Z. Li, Global stability of an agestructured cholera model, Math. Biol. Enger., 11 (2014), 641665. 

32 
P. Zhang, Z. Feng and F. Milner, A schistosomiasis model with an agestructure in human hosts and its application to treatment strategies, Math. Biosci., 205 (2007), 83107. 

Go to top
