Mathematical Biosciences and Engineering (MBE)

Optimal time to intervene: The case of measles child immunization
Pages: 323 - 335, Issue 1, February 2018

doi:10.3934/mbe.2018014      Abstract        References        Full text (972.2K)           Related Articles

Zuzana Chladná - Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia (email)

1 J. Arino, C. Bauch, F. Brauer, S. M. Driedger, A. L. Greer, S. M. Moghadas, N. J. Pizzi, B. Sander, A. Tuite and P. Van Den Driessche et al., Pandemic influenza: Modelling and public health perspectives, Math Biosci Eng, 8 (2011), 1-20.       
2 C. T. Bauch and D. J. Earn, Vaccination and the theory of games, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 13391-13394.       
3 R. A. Brealey, S. C. Myers and F. Allen, Corporate Finance, Auflage, New York, 2006.
4 B. Buonomo, A. d'Onofrio and D. Lacitignola, Modeling of pseudo-rational exemption to vaccination for seir diseases, Journal of Mathematical Analysis and Applications, 404 (2013), 385-398.       
5 Z. Chladná and E. Moltchanova, Incentive to vaccinate: A synthesis of two approaches, Acta Mathematica Universitatis Comenianae, 84 (2015), 283-296.       
6 T. E. Copeland, V. Antikarov and T. E. Copeland, Real Options: A Practitioner's Guide, Texere New York, 2001.
7 A. K. Dixit and R. S. Pindyck, Investment Under Uncertainty, Princeton university press, 1994.
8 A. d'Onofrio, P. Manfredi and P. Poletti, The interplay of public intervention and private choices in determining the outcome of vaccination programmes, PLoS ONE, 7 (2012), e45653.
9 EPIS SR, Analýza epidemiologickej situácie a činnosti odborov epidemiológie v Slovenskej republike. (In Slovak), 2005-2014, URL http://www.epis.sk/InformacnaCast/Publikacie/VyrocneSpravy.aspx.
10 H. Hudečková, S. Straka, M. Avdičová and S. Rusnáková, Health and economic benefits of mandatory regular vaccination in Slovakia. IV. Measles, rubella and mumps (In Slovak), Epidemiologie, mikrobiologie, imunologie: Časopis Společnosti pro epidemiologii a mikrobiologii České lékařské společnosti JE Purkyně, 50 (2001), 31-35.
11 J. C. Hull, Options, Futures, and Other Derivatives, Pearson Education India, 2006.
12 M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, NJ, 2008.       
13 P. Manfredi and A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer Science & Business Media, 2013.       
14 Public Health Act, Slovakia 2007, Public Health Protection Act, Slovakia 2007 (In Slovak: Zákon č. 355/2007 Z. z.o ochrane, podpore a rozvoji verejného zdravia a o zmene a doplnení niektorých zákonov), URL http://www.zakonypreludi.sk/zz/2007-355.
15 A. Shefer, P. Briss, L. Rodewald, R. Bernier, R. Strikas, H. Yusuf, S. Ndiaye, S. Wiliams, M. Pappaioanou and A. R. Hinman, Improving immunization coverage rates: An evidence-based review of the literature, Epidemiologic Reviews, 21 (1999), 96-142.
16 P. J. Smith, S. G. Humiston, E. K. Marcuse, Z. Zhao, C. G. Dorell, C. Howes and B. Hibbs, Parental delay or refusal of vaccine doses, childhood vaccination coverage at 24 months of age, and the health belief model, Public Health Reports, 126 (2011), p135.
17 E. Vynnycky and R. White, An Introduction to Infectious Disease Modelling, Oxford University Press, 2010.
18 WHO 2012, Global measles and rubella strategic plan : 2012-2020. The World Health Organization, URL http://apps.who.int/iris/bitstream/10665/44855/1/9789241503396_eng.pdf.
19 WHO 2015, Monitoring and surveillance. Data, statistics and graphics. The World Health Organization, URL http://www.who.int/immunization/monitoring_surveillance/data/en/.

Go to top