`a`
Mathematical Biosciences and Engineering (MBE)
 

Effect of seasonality on the dynamics of an imitation--based vaccination model with public health intervention
Pages: 299 - 321, Issue 1, February 2018

doi:10.3934/mbe.2018013      Abstract        References        Full text (1629.3K)           Related Articles

Bruno Buonomo - Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples, Italy (email)
Giuseppe Carbone - Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples, Italy (email)
Alberto d'Onofrio - International Prevention Research Institute, 95 cours Lafayette, 69006 Lyon, France (email)

1 R. M. Anderson, The impact of vaccination on the epidemiology of infectious diseases, in The Vaccine Book, B. R. Bloom and P.-H. Lambert (eds.) The Vaccine Book (Second Edition). Elsevier B. V., Amsterdam, (2006), 3-31.
2 R. M. Anderson and R. M. May, Infectious Diseases of Humans. Dynamics and Control, Oxford University Press, Oxford, 1991.
3 N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091.       
4 C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. B, 272 (2005), 1669-1675.
5 B. R. Bloom and P.-H. Lambert (eds.), The Vaccine Book (Second Edition), Elsevier B. V., Amsterdam, 2006.
6 F. Brauer, P. van den Driessche and J. Wu (eds.), Mathematical Epidemiology, Lecture Notes in Mathematics. Mathematical biosciences subseries, vol. 1945, Springer, Berlin, 2008.       
7 B. Buonomo, A. d'Onofrio and D. Lacitignola, Modeling of pseudo-rational exemption to vaccination for SEIR diseases, J. Math. Anal. Appl., 404 (2013), 385-398.       
8 B. Buonomo, A. d'Onofrio and P. Manfredi, Public Health Intervention to shape voluntary vaccination: Continuous and piecewise optimal control, Submitted.
9 V. Capasso, Mathematical Structure of Epidemic Models. 2nd edition. Springer, 2008.
10 L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 16, Springer-Verlag, New York-Heidelberg, 1971.       
11 C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34, Springer, New York, 2006.       
12 M. Choisy, J.-F. Guegan and P. Rohani, Dynamics of infectious diseases and pulse vaccination: Teasing apart the embedded resonance effects, Physica D, 223 (2006), 26-35.       
13 W. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.       
14 O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.       
15 A. d'Onofrio, Stability properties of pulses vaccination strategy in SEIR epidemic model, Math. Biosci., 179 (2002), 57-72.       
16 A. d'Onofrio and P. Manfredi, Impact of Human Behaviour on the Spread of Infectious Diseases: a review of some evidences and models, Submitted.
17 A. d'Onofrio, P. Manfredi and P. Poletti, The impact of vaccine side effects on the natural history of immunization programmes: An imitation-game approach, J. Theor. Biol., 273 (2011), 63-71.       
18 A. d'Onofrio, P. Manfredi and P. Poletti, The interplay of public intervention and private choices in determining the outcome of vaccination programmes, PLoS ONE, 7 (2012), e45653.
19 A. d'Onofrio, P. Manfredi and E. Salinelli, Vaccinating behaviour, information and the dynamics of SIR vaccine preventable diseases, Theor. Popul. Biol., 71 (2007), 301-317.
20 A. d'Onofrio, P. Manfredi and E. Salinelli, Fatal SIR diseases and rational exemption to vaccination, Math. Med. Biol., 25 (2008), 337-357.
21 D. Elliman and H. Bedford, MMR: Where are we now?, Archives of Disease in Childhood, 92 (2007), 1055-1057.
22 B. F. Finkenstadt and B. T. Grenfell, Time series modelling of childhood diseases: A dynamical systems approach, Appl. Stat., 49 (2000), 187-205.       
23 N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology, Proc. Royal Soc. B, 273 (2006), 2541-2550.
24 M. W. Hirsch and H. Smith, Monotone dynamical systems, in Handbook of Differential Equations: Ordinary Differential Equations, vol. II, Elsevier B. V., Amsterdam, 2 (2005), 239-357.       
25 IMI. Innovative medicine initiative. First Innovative Medicines Initiative Ebola projects get underway, Available from: http://www.imi.europa.eu/content/ebola-project-launch (accessed September 2016).
26 A. Kata, A postmodern Pandora's box: Anti-vaccination misinformation on the Internet, Vaccine, 28 (2010), 1709-1716.
27 A. Kata, Anti-vaccine activists, Web 2.0, and the postmodern paradigm-An overview of tactics and tropes used online by the anti-vaccination movement, Vaccine, 30 (2012), 3778-3789.
28 M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, NJ, 2008.       
29 W. P. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), 453-468.
30 P. Manfredi and A. d'Onofrio (eds), Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer, New York, 2013.       
31 M. Martcheva, An Introduction to Mathematical Epidemiology, Texts in Applied Mathematics, 61, Springer, New York, 2015.       
32 E. Miller and N. J. Gay, Epidemiological determinants of pertussis, Dev. Biol. Stand., 89 (1997), 15-23.
33 J. D. Murray, Mathematical Biology. I. An Introduction. Third Edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.       
34 Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl., 325 (2010), 230-237.       
35 G. Napier, D. Lee, C. Robertson, A. Lawson and K. G. Pollock, A model to estimate the impact of changes in MMR vaccine uptake on inequalities in measles susceptibility in Scotland, Stat. Methods Med. Res., 25 (2016), 1185-1200.       
36 L. F. Olsen and W. M. Schaffer, Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics, Science, 249 (1990), 499-504.
37 T. Philipson, Private Vaccination and Public Health an empirical examination for U.S. Measles. J. Hum. Res., 31 (1996), 611-630.
38 I. B. Schwartz and H. L. Smith, Infinite subharmonic bifurcation in an SEIR epidemic model, J. Math. Biol., 18 (1983), 233-253.       
39 H. E. Soper, The interpretation of periodicity in disease prevalence, J. R. Stat. Soc., 92 (1929), 34-73.
40 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.       
41 A. van Lier, J. van de Kassteele, P. de Hoogh, I. Drijfhout and H. de Melker, Vaccine uptake determinants in The Netherlands, Eur. J. Public Health, 24 (2013), 304-309.
42 G. S. Wallace, Why Measles Matters, 2014, Available from: http://stacks.cdc.gov/view/cdc/27488/cdc_27488_DS1.pdf (accessed November 2016).
43 Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d'Onofrio, P. Manfredi, M. Perc, N. Perra, M. Salathé and D. Zhao, Statistical physics of vaccination, Physics Reports, 664, (2016), 1-113.       
44 W. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Eq., 20 (2008), 699-717.       
45 WHO, Vaccine safety basics, Available from: http://vaccine-safety-training.org/adverse-events-classification.html (accessed November 2016).
46 R. M. Wolfe and L. K. Sharp, Anti-vaccinationists past and present, Brit. Med. J., 325 (2002), p430.
47 F. Zhang and X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.       
48 X. Q. Zhao, Dynamical Systems in Population Biology, CMS Books Math., vol.16, Springer-Verlag, New York, 2003.       

Go to top