`a`
Mathematical Biosciences and Engineering (MBE)
 

A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity
Pages: 275 - 298, Issue 1, February 2018

doi:10.3934/mbe.2018012      Abstract        References        Full text (878.3K)                  Related Articles

Ping Yan - Infectious Diseases Prevention and Control Branch, Public Health Agency of Canada, Ottawa, Ontario, Canada, K1A 0K9, Canada (email)

1 R. Anderson and R. May, Infectious Diseases of Humans, Dynamics and Control, Oxford University Press, 1991.
2 O. Diekmann, J. A. P. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton Series in Theoretical and Computational Biology, Princeton University Press, 2013.       
3 K. Dietz, Some problems in the theory of infectious diseases transmission and control, in Epidemic Models: their Structure and Relation to Data (ed. Denis Mollison), Cambridge University Press, (1995), 3-16.
4 M. Greenwood and G. Yule, An inquiry into the nature of frequency distributions representative of multiple happenings with particular reference to occurrence of multiple attacks of diseases or of repeated accidents, Journal of the Royal Statistical Society, 83 (1920), 255-279.
5 S. Goldstein, Operational representation of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder function, Proc. London Math. Soc., 2 (1932), 103-125.       
6 P. Hougaard, Life table methods for heterogenous populations: Distributions describing the heterogeneity, Biometrika, 71 (1984), 75-83.       
7 P. Hougaard, Frailty models for survival data, Lifetime Data Analysis, 1 (1995), 255-273.
8 E. K. Lenzi, E. P. Borges and R. S. Mendes, A q-generalization of Laplace transforms, Journal of Physics A: Mathematical and General, 32 (1999), 8551-8561.       
9 K. S. Lomax, Business failures, another example of the analysis of failure data, Journal of the American Statistics Association, 49 (1954), 847-852.
10 J. Ma and D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bulletin of Mathematical Biology, 68 (2006), 679-702.       
11 A. W. Marshall and I. Olkin, Life Distributions, Structure of Nonparametric, Semiparametric and Parametric Families, Springer, 2007.       
12 S. R. Naik, The q-Laplace transforms and applications, Chapter 7 of Pathway Distributions, Autoregressive Processes and Their Applications, PhD Thesis, Mahatima Gandhi University, India,(2008).
13 A. Olivieri, Heterogeneity in survival models, applications to pensions and life annuities, Belgian Actuarial Bulletin, 6 (2006), 23-39.
14 S. Picoli , R. S. Mendes, L. C. Malacarne and R. P. B. Santos, q-distributions in complex systems: A brief review, Brazilian Journal of Physics, 39 (2009), 468-474.
15 S. Ross, Stochastic Processes, Second Edition, Wiley and Sons Inc, 1996.       
16 R. K. Saxena, A study of the generalized Stieltjes transform, Lecturer in Mathematics, M.B. College, Udaipur, 25 (1959), 340-355.       
17 J. F. Steffensen, Deux problèms du calcul des probabilités, Ann. Inst. H. Poincaré, 3 (1933), 319-344.       
18 J. W. Vaupel, K. G. Manton and E. Stallard, The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16 (1979), 439-354.
19 H. W. Watson and F. Galton, On the probability of extinction of families, J. Anthropol. Inst. Great Britain and Ireland, 4 (1874), 138-144.
20 P. Yan and Z. Feng, Variability order of the latent and the infectious periods in a deterministic SEIR epidemic model and evaluation of control effectiveness, Mathematical Biosciences, 224 (2010), 43-52.       
21 O. Yürekli, A theorem on the generalized Stieltjes transform and its applications, Journal of Mathematical Analysis and Applications, 168 (1992), 63-71.       

Go to top