`a`
Mathematical Biosciences and Engineering (MBE)
 

Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents
Pages: 95 - 123, Issue 1, February 2018

doi:10.3934/mbe.2018004      Abstract        References        Full text (2149.0K)           Related Articles

Raimund Bürger - CI²MA and Departamento de Ingeniería Matemática , Universidad de Concepción, Casilla 160-C, Concepción , Chile (email)
Gerardo Chowell - Mathematical, Computational & Modeling Sciences Center, School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287, United States (email)
Elvis Gavilán - CI$^2$MA and Departamento de Ingeniería Matemática , Universidad de Concepción, Casilla 160-C, Concepción, Chile (email)
Pep Mulet - Departament de Matemàtica Aplicada, Universitat de València, Av. Dr. Moliner 50, E-46100 Burjassot, Spain (email)
Luis M. Villada - GIMNAP-Departamento de Matemáticas, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile (email)

1 G. Abramson and V. M. Kenkre, Spatiotemporal patterns in the Hantavirus infection, Phys. Rev. E, 66 (2002), 011912 (5pp).
2 M. A. Aguirre, G. Abramson, A. R. Bishop and V. M. Kenkre, Simulations in the mathematical modeling of the spread of the Hantavirus, Phys. Rev. E, 66 (2002), 041908 (5pp).
3 L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic of the steady states for an SIS epidemic patch model, SIAM J. Appl. Math., 67 (2007), 1283-1309.       
4 L. J. S. Allen, R. K. McCormack and C. B. Jonsson, Mathematical models for hantavirus infection in rodents, Bull. Math. Biol. 68 (2006), 511-524.       
5 R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford Science Publications, 1991.
6 J. Arino, Diseases in metapopulations. In Z. Ma, Y. Zhou and J. Wu (Eds.), Modeling and Dynamics of Infectious Diseases, Higher Education Press, Beijing, 11 (2009), 64-122.       
7 J. Arino, J. R. Davis, D. Hartley, R. Jordan, J. M. Miller and P. van den Driessche, A multi-species epidemic model with spatial dynamics, Mathematical Medicine and Biology, 22 (2005), 129-142.
8 U. Ascher, S. Ruuth and J. Spiteri, Implicit-explicit Runge-Kutta methods for time dependent partial differential equations, Appl. Numer. Math., 25 (1997), 151-167.       
9 P. Bi, X. Wu, F. Zhang, K. A. Parton and S. Tong, Seasonal rainfall variability, the incidence of hemorrhagic fever with renal syndrome, and prediction of the disease in low-lying areas of China, Amer. J. Epidemiol., 148 (1998), 276-281.
10 S. Boscarino, R. Bürger, P. Mulet, G. Russo and L. M. Villada, Linearly implicit IMEX Runge-Kutta methods for a class of degenerate convection-diffusion problems, SIAM J. Sci. Comput., 37 (2015), B305-B331.       
11 S. Boscarino, F. Filbet and G. Russo, High order semi-implicit schemes for time dependent partial differential equations, J. Sci. Comput. 68 (2016), 975-1001.       
12 S. Boscarino, P. G. LeFloch and G. Russo, High-order asymptotic-preserving methods for fully nonlinear relaxation problems, SIAM J. Sci. Comput., 36 (2014), A377-A395.       
13 S. Boscarino and G. Russo, On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comput., 31 (2009), 1926-1945.       
14 S. Boscarino and G. Russo, Flux-explicit IMEX Runge-Kutta schemes for hyperbolic to parabolic relaxation problems, SIAM J. Numer. Anal., 51 (2013), 163-190.       
15 F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Second Ed., Springer, New York, 2012.       
16 M. Brummer-Korvenkontio, A. Vaheri, T. Hovi, C. H. von Bonsdorff, J. Vuorimies, T. Manni, K. Penttinen, N. Oker-Blom and J. Lähdevirta, Nephropathia epidemica: Detection of antigen in bank voles and serologic diagnosis of human infection. J. Infect. Dis., 141 (1980), 131-134.
17 J. Buceta, C. Escudero, F. J. de la Rubia and K. Lindenberg, Outbreaks of Hantavirus induced by seasonality, Phys. Rev. E, 69 (2004), 021908 (9pp).       
18 R. Bürger, G. Chowell, P. Mulet and L. M. Villada, Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile, Math. Biosci. Eng., 13 (2016), 43-65.       
19 R. Bürger, R. Ruiz-Baier and C. Tian, Stability analysis and finite volume element discretization for delay-driven spatio-temporal patterns in a predator-prey model, Math. Comput. Simulation, 132 (2017), 28-52.       
20 R. M. Colombo and E. Rossi, Hyperbolic predators versus parabolic preys, Commun. Math. Sci., 13 (2015), 369-400.       
21 M. Crouzeix, Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques, Numer. Math., 35 (1980), 257-276.       
22 O. Diekmann, H. Heesterbeek and T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2013.       
23 R. Donat and I. Higueras, On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms, Math. Comp., 80 (2011), 2097-2126.       
24 C. Escudero, J. Buceta, F. J. de la Rubia and K. Lindenberg, Effects of internal fluctuations on the spreading of Hantavirus, Phys. Rev. E, 70 (2004), 061907 (7pp).
25 S. de Franciscis and A. d'Onofrio, Spatiotemporal bounded noises and transitions induced by them in solutions of the real Ginzburg-Landau model, Phys. Rev. E, 86 (2012), 021118 (9pp); Erratum, Phys. Rev. E, 94 (2016), 0599005(E) (1p).
26 M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, Amer. Inst. Math. Sci., Springfield, MO, USA, 2006.       
27 G. S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202-228.       
28 P. Kachroo, S. J. Al-Nasur, S. A. Wadoo and A. Shende, Pedestrian Dynamics, Springer-Verlag, Berlin, 2008.
29 A. Källén, Thresholds and travelling waves in an epidemic model for rabies, Nonlin. Anal. Theor. Meth. Appl., 8 (1984), 851-856.       
30 A. Källén, P. Arcuri and J. D. Murray, A simple model for the spatial spread and control of rabies, J. Theor. Biol., 116 (1985), 377-393.       
31 Y. Katznelson, An Introduction to Harmonic Analysis, Third Ed., Cambridge University Press, Cambridge, UK, 2004.       
32 C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), 139-181.       
33 W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. A, 115 (1927), 700-721.
34 N. Kumar, R. R. Parmenter and V. M. Kenkre, Extinction of refugia of hantavirus infection in a spatially heterogeneous environment, Phys. Rev. E, 82 (2010), 011920 (8pp).
35 T. Kuniya, Y. Muroya and Y. Enatsu, Threshold dynamics of an SIR epidemic model with hybrid and multigroup of patch structures, Math. Biosci. Eng., 11 (2014), 1375-1393.       
36 H. N. Liu, L. D. Gao, G. Chowell, S. X. Hu, X. L. Lin, X. J. Li, G. H. Ma, R. Huang, H. S. Yang, H. Tian and H. Xiao, Time-specific ecologic niche models forecast the risk of hemorrhagic fever with renal syndrome in Dongting Lake district, China, 2005-2010, PLoS One, 9 (2014), e106839 (8pp).
37 X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), 200-212.       
38 H. Malchow, S. V. Petrovskii and E. Venturino, Spatial Patterns in Ecology and Epidemiology: Theory, Models, and Simulation, Chapman & Hall/CRC, Boca Raton, FL, USA, 2008.       
39 J. N. Mills, B. A. Ellis, K. T. McKee, J. I. Maiztegui and J. E. Childs, Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina, J. Mammal., 72 (1991), 470-479.
40 P. A. P. Moran, Notes on continuous stochastic phenomena, Biometrika 37 (1950), 17-23.       
41 J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications. Third Edition. Springer, New York, 2003.       
42 J. D. Murray, E. A. Stanley and D. L. Brown, On the spatial spread of rabies among foxes, Proc. Roy. Soc. London B, 229 (1986), 111-150.
43 A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives. Second Edition, Springer-Verlag, New York, 2001.       
44 O. Ovaskainen and E. E. Crone, Modeling animal movement with diffusion, in S. Cantrell, C. Cosner and S. Ruan (Eds.), Spatial Ecology, Chapman & Hall/CRC, Boca Raton, FL, USA, 2009, 63-83.
45 L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25 (2005), 129-155.       
46 J. A. Reinoso and F. J. de la Rubia, Stage-dependent model for the Hantavirus infection: The effect of the initial infection-free period, Phys. Rev. E, 87 (2013), 042706 (6pp).       
47 J. A. Reinoso and F. J. de la Rubia, Spatial spread of the Hantavirus infection, Phys. Rev. E, 91 (2015), 032703 (5pp).       
48 R. Riquelme, M. L. Rioseco, L. Bastidas, D. Trincado, M. Riquelme, H. Loyola and F. Valdivieso, Hantavirus pulmonary syndrome, southern chile, 1995-2012, Emerg. Infect. Dis., 21 (2015), 562-568.
49 C. Robertson, C. Mazzetta and A. d'Onofrio, Regional variation and spatial correlation, Chapter 5 in P. Boyle and M. Smans (Eds.), Atlas of Cancer Mortality in the European Union and the European Economic Area 1993-1997, IARC Scientific Publication, WHO Press, Geneva, Switzerland, 159 (2008), 91-113.
50 E. Rossi and V. Schleper, Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions, ESAIM Math. Modelling Numer. Anal., 50 (2016), 475-497.       
51 S. Ruan and J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in S. Cantrell, C. Cosner and S. Ruan (Eds.), Spatial Ecology, Chapman & Hall/CRC, Boca Raton, FL, USA, 2010, 293-316.
52 L. Sattenspiel, The Geographic Spread of Infectious Diseases: Models and Applications, Princeton Series in Theoretical and Computational Biology, Princeton University Press, 2009.       
53 C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83 (1988), 32-78.       
54 S. W. Smith, Digital Signal Processing: A Practical Guide for Engineers and Scientists. Demystifying technology series: by engineers, for engineers. Newnes, 2003.
55 H. Y. Tian, P. B. Yu, A. D. Luis, P. Bi, B. Cazelles, M. Laine, S. Q. Huang, C. F. Ma, S. Zhou, J. Wei, S. Li, X. L. Lu, J. H. Qu, J. H. Dong, S. L. Tong, J. J. Wang, B. Grenfell and B. Xu, Changes in rodent abundance and weather conditions potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi'an, China, 2005-2012, PLoS Negl. Trop. Dis., 9 (2015), paper e0003530 (13pp).
56 M. Treiber and A. Kesting, Traffic Flow Dynamics, Springer-Verlag, Berlin, 2013.       
57 P. van den Driessche, Deterministic compartmental models: Extensions of basic models, In F. Brauer, P. van den Driessche and J. Wu (Eds.), Mathematical Epidemiology, Springer-Verlag, Berlin, 1945 (2008), 147-157.       
58 P. van den Driessche, Spatial structure: Patch models, In F. Brauer, P. van den Driessche and J. Wu (Eds.), Mathematical Epidemiology, Springer-Verlag, Berlin, 1945 (2008), 179-189.       
59 P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.       
60 E. Vynnycky and R. E. White, An Introduction to Infectious Disease Modelling, Oxford University Press, 2010.
61 J. Wu, Spatial structure: Partial differential equations models, In F. Brauer, P. van den Driessche and J. Wu (Eds.), Mathematical Epidemiology, Springer-Verlag, Berlin, 2008, 191-203.
62 H. Xiao, X. L. Lin, L. D. Gao, X. Y. Dai, X. G. He and B. Y. Chen, Environmental factors contributing to the spread of hemorrhagic fever with renal syndrome and potential risk areas prediction in midstream and downstream of the Xiangjiang River [in Chinese], Scientia Geographica Sinica, 33 (2013), 123-128.
63 C. J. Yahnke, P. L. Meserve, T. G. Ksiazek and J. N. Mills, Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan chaco, Am. J. Trop. Med. Hyg., 65 (2001), 768-776.
64 W. Y. Zhang, L. Q. Fang, J. F. Jiang, F. M. Hui, G. E. Glass, L. Yan, Y. F. Xu, W. J. Zhao, H. Yang and W. Liu, Predicting the risk of hantavirus infection in Beijing, People's Republic of China, Am. J. Trop. Med. Hyg., 80 (2010), 678-683.
65 W. Y. Zhang, W. D. Guo, L. Q. Fang, C. P. Li, P. Bi, G. E. Glass, J. F. Jiang, S. H. Sun, Q. Qian, W. Liu, L. Yan, H. Yang, S. L. Tong and W. C. Cao, Climate variability and hemorrhagic fever with renal syndrome transmission in Northeastern China, Environ. Health Perspect, 118 (2010), 915-920.
66 X. Zhong, Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows, J. Comput. Phys., 128 (1996), 19-31.       

Go to top