Modeling ebola virus disease transmissions with reservoir in a complex virus life ecology
Pages: 21  56,
Issue 1,
February
2018
doi:10.3934/mbe.2018002 Abstract
References
Full text (1273.2K)
Related Articles
Tsanou Berge  Department of Mathematics and Computer Science, University of Dschang, P.O. Box 67 Dschang, Cameroon (email)
Samuel Bowong  Laboratory of Applied Mathematics, Department of Mathematics and Computer Science, Faculty of Science, University of Douala, P.O. Box 24157 Douala, Cameroon (email)
Jean Lubuma  Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa (email)
Martin Luther Mann Manyombe  Department of Mathematics, Faculty of Science, University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon (email)
1 
C. Althaus, Estimating the reproduction number of Ebola (EBOV) during outbreak in West Africa, PLOS Currents, 2014. 

2 
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford,England: Oxford University Press, 1991. 

3 
S. Anita and V. Capasso, On the stabilization of reactiondiffusion systems modeling a class of manenvironment epidemics: A review, Math. Meth. Appl. Sci., 33 (2010), 12351244. 

4 
S. Anita and V. Capasso, Stabilization of a reactiondiffusion system modelling a class of spatially structured epidemic systems via feedback control, Nonlinear Analysis: Real World Applications, 13 (2012), 725735. 

5 
A. A. Arata and B. Johnson, Approaches toward studies on potential reservoirs of viral haemorrhagic fever in southern Sudan (1977), In Ebola Virus Haemorrhagic Fever (Pattyn, S.R.S., ed.), (1978), 191200. 

6 
S. Baize, D. Pannetier and L. Oestereich et al., Emergence of Zaire Ebola Virus Disease in Guinea  Preliminary Report, New England Journal of Medecine, 2014. 

7 
S. Baize, D. Pannetier and L. Oestereich et al., Emergence of Zaire Ebola Virus Disease in Guinea  Preliminary Report, New England Journal of Medecine, 2014. 

8 
M. BaniYabhoub et al., Reproduction numbers for infections with freeliving pathogens growing in the environment, J. Biol. Dyn., 6 (2012), 923940. 

9 
T. Berge, J. Lubuma, G. M. Moremedi, N. Morris and R. K. Shava, A simple mathematical model for Ebola in Africa, J. Biol. Dyn., 11 (2016), 4274. 

10 
K. Bibby et al., Ebola virus persistence in the environment: State of the knowledge and research needs, Environ. Sci. Technol. Lett., 2 (2015), 26. 

11 
M. C. J. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in US cities, PNAS, 104 (2007), 75887593. 

12 
V. Capasso and S. L. PaveriFontana, A mathematical model for the 1973 cholera epidemic in the european mediterranean region, Revue dépidémiologié et de santé publiqué, 27 (1979), 121132. 

13 
C. CastilloChavez, K. Barley, D. Bichara, D. Chowell, E. Diaz Herrera, B. Espinoza, V. Moreno, S. Towers and K. E. Yong, Modeling ebola at the mathematical and theoretical biology institute (MTBI), Notices of the AMS, 63 (2016), 366371. 

14 
C. CastilloChavez and H. Thieme, Asymptotically autonomous epidemic models, in: O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds.), Math. Pop. Dyn.: Analysis of Heterogeneity, Springer, Berlin, 1995, p33. 

15 
N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of mathematical model, Bull. Math. Biol., 70 (2008), 12721296. 

16 
G. Chowell et al., The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda, J. Theor. Biol., 229 (2004), 119126. 

17 
C. T. Codeço, Endemic and epidemic dynamic of cholera: The role of the aquatic reservoir, BMC Infectious Diseases, 1 (2001), p1. 

18 
M.A. de La Vega, D. Stein and G. P. Kobinger, Ebolavirus evolution: Past and present, PLoS Pathog, 11 (2015), e1005221. 

19 
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of nextgeneration matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873885. 

20 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 2948. 

21 
A. d'Onofrio and P. Manfredi, Informationrelated changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theor. Biol., 256 (2009), 473478. 

22 
M. Eichner, S. F. Dowell and N. Firese, Incubation period of Ebola Hemorrhagic Virus subtype Zaire, Osong Public Health and Research Perspectives, 2 (2011), 37. 

23 
B. Espinoza, V. Moreno, D. Bichara and C. CastilloChavez, Assessing the Efficiency of Cordon Sanitaire as a Control Strategy of Ebola, arXiv:1510.07415v1 [qbio.PE] 26 Oct 2015. 

24 
F. O. Fasina, A. Shittu, D. Lazarus, O. Tomori, L. Simonsen, C. Viboud and G. Chowell, Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014, Eurosurveill, 19 (2014), 20920, Available online: https://www.ncbi.nlm.nih.gov/pubmed/25323076. 

25 
H. Feldmann et al., Ebola virus ecology: A continuing mystery, Trends Microbiol, 12 (2004), 433437. 

26 
A. Groseth, H. Feldmann and J. E. Strong, The ecology of ebola virus, TRENDS in Microbiology, 15 (2007), 408416. 

27 
J. K. Hale, Ordinary Differential Equations, Pure and Applied Mathematics, John Wiley & Sons, New York, 1969. 

28 
A. M. HenaoRestrepo et al., Efficacy and effectiveness of an rVSVvectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination clusterrandomised trial, The Lancet, 386 (1996), 857866. 

29 
H. W. Hethcote and H. R. Thieme, Stability of the endemic equilibrium in epidemic models with subpopulations, Math. Biosci., 75 (1985), 205227. 

30 
M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math., 383 (1988), 153. 

31 
B. Ivorra, D. Ngom and A. M. Ramos, BeCoDiS: A mathematical model to predict the risk of human diseases spread between countriesvalidation and application to the 20142015 ebola virus disease epidemic, Bull. Math. Biol., 77 (2015), 16681704. 

32 
M. H. Kuniholm, Bat exposure is a risk factor for Ebola virus infection. In Filoviruses: Recent Advances and Future Challenges: An ICID Global Symposium, 2006. 

33 
V. Lakshmikantham, S. Leela and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Monographs and Textbooks in Pure and Applied Mathematics, 125. Marcel Dekker, Inc., New York, 1989. 

34 
J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976. 

35 
J. Legrand, R. F. Grais, P. Y. Boelle, A. J. Valleron and A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiol. Infect., 135 (2007), 610621. 

36 
P. E. Lekone and B. F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics, 62 (2006), 11701177. 

37 
E. M. Leroy et al., Fruit bats as reservoirs of Ebola virus, Nature, 438 (2005), 575576. 

38 
E. M. Leroy et al., Multiple Ebola virus transmission events and rapid decline of central African wildlife, Science, 303 (2004), 387390. 

39 
M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191213. 

40 
M. Y. Li and J. S. Muldowney, A geometrical approach to globalstability problems, SIAM J. Appl. Anal., 27 (1996), 10701083. 

41 
P. Manfredi and A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer, 2013. 

42 
M. L. Mann Manyombe, J. Mbang, J. Lubuma and B. Tsanou, Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers, Math. Biosci. Eng, 13 (2016), 813840. 

43 
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol, 254 (2008), 178196. 

44 
D. Ndanguza et al., Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo, Afr. Mat., 24 (2013), 5568. 

45 
T. J. Oähea et al., Bat Flight and Zoonotic Viruses, Emerging Infectious Diseases, 2014. 

46 
T. J. Piercy et al., The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol, J. Appl. Microbiol., 109 (2010), 15311539. 

47 
X. Pourrut et al., Spatial and temporal patterns of Zaire Ebola virus antibody prevalence in the possible reservoir bat species, J. Infect. Dis., 15 (2007), 176183. 

48 
H. L. Smith, Systems of ordinary differential equations which generate an order preserving flow, A survey of results, SIAM Rev., 30 (1988), 87113. 

49 
J. P. Tian and J. Wang, Global stability for cholera epidemic models, Math. Biosci., 232 (2011), 3141. 

50 
The Centers for Disease Control and Prevention, 20142016 Ebola outbreak in West Africa, https://www.cdc.gov/vhf/ebola/outbreaks/2014westafrica/index.html (Page last reviewed, October 21, 2016). 

51 
The Centers for Disease Control and Prevention, https://www.cdc.gov/vhf/ebola, (Page last reviewed, June 22, 2016). 

52 
S. Towers, O. PattersonLomba and C. CastilloChavez, Temporal variations in the effective reproduction number of the 2014 West Africa Ebola outbreak, PLOS Currents Outbreaks, Sept 18, 2014. 

53 
B. Tsanou, S. Bowong, J. Lubuma and J. Mbang, Assessment the impact of the environmental contamination on the transmission of Ebola Virus Disease (EVD), J. Appl. Math. Comput., (2016), 139. 

54 
M. Vidyasagar, Decomposition techniques for largescale systems with nonadditive interactions: stability and stabilizability, IEEE Trans. Autom. Control., 25 (1980), 773779. 

55 
WHO, Ebola Response Roadmap Situation Report, 1 October 2014, http://apps.who.int/iris/bitstream/10665/135600/1/roadmapsitrep_1Oct2014_eng.pdf. 

56 
WHO, Ebola virus disease. Fact sheet N$^\circ$ 103, Updated January 2016, http://www.who.int/mediacentre/factsheets/fs103/en/ 

57 
WHO Ebola Response Team, Ebola Virus Disease in West Africa  The First 9 Months of the Epidemic and Forward Projections, N. Engl. J. Med. 2014. 

58 
WHO, Unprecedented number of medical staff infected with Ebola, http://www.who.int/mediacentre/news/ebola/25august2014/en/. 

59 
R. E. Wilson and V. Capasso, Analysis of a reactiondiffusion system modeling manenvironmentman epidemics. SIAM J. Appl. Math., 57 (1997), 327346. 

60 
D. Youkee et al., Assessment of environmental contamination and environmental decontamination practices within an Ebola holding unit, Freetown, Sierra Leone. PLOS ONE, December 1, 2015. 

61 
J. Zhang and Z. Ma, Global dynamics of an SEIR epidemic model with saturating contact rate, Math. Biosci., 185 (2003), 1532. 

Go to top
