`a`
Big Data and Information Analytics (BDIA)
 

On identifiability of 3-tensors of multilinear rank $(1,\ L_{r},\ L_{r})$
Pages: 391 - 401, Issue 4, October 2016

doi:10.3934/bdia.2016017      Abstract        References        Full text (377.2K)           Related Articles

Ming Yang - Department of Computer Science, Southern Illinois University-Carbondale, Carbondale, IL 62901, United States (email)
Dunren Che - Department of Computer Science, Southern Illinois University-Carbondale, Carbondale, IL 62901, United States (email)
Wen Liu - Department of Mathematics, Lamar University, Beaumont, TX 77710, United States (email)
Zhao Kang - Department of Computer Science, Southern Illinois University-Carbondale, Carbondale, IL 62901, United States (email)
Chong Peng - Department of Computer Science, Southern Illinois University-Carbondale, Carbondale, IL 62901, United States (email)
Mingqing Xiao - Department of Mathematics, Southern Illinois University-Carbondale, Carbondale, IL 62901, United States (email)
Qiang Cheng - Department of Computer Science, Southern Illinois University-Carbondale, Carbondale, IL 62901, United States (email)

1 L. Chiantini and C. Ciliberto, Weakly defective varieties, Transactions of the American Mathematical Society, 354 (2002), 151-178.       
2 L. Chiantini and G. Ottaviani, On generic identifiability of 3-tensors of small rank, SIAM Journal on Matrix Analysis and Applications, 33 (2012), 1018-1037.       
3 L. Chiantini, G. Ottaviani and N. Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 1265-1287.       
4 A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa and H. Phan, Tensor decompositions for signal processing applications: From two-way to multiway component analysis, Signal Processing Magazine, IEEE, 32 (2015), 145-163.
5 P. Comon, Tensor decompositions, State of the art and applications, J. G. McWhirter and I. K. Proudler. Mathematics in Signal Processing V, Clarendon Press, Oxford, 71 (2002), 1-24.       
6 L. DeLathauwer, Decompositions of a higher-order tensor in block terms-part I: Lemmas for partitioned matrices, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1022-1032.       
7 L. DeLathauwer, Decompositions of a higher-order tensor in block terms-part II: Definitions and uniqueness, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1033-1066.       
8 L. DeLathauwer and D. Nion, Decompositions of a higher-order tensor in block terms-part III: Alternating least squares algorithms, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1067-1083.       
9 I. Domanov and L. DeLathauwer, Generic uniqueness of a structured matrix factorization and applications in blind source separation, IEEE Journal of Selected Topics in Signal Processing, 10 (2016), 701-711.
10 I. Domanov and L. De Lathauwer, Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL, SIAM Journal on Matrix Analysis and Applications, 36 (2015), 1567-1589.       
11 J. Draisma and J. Kuttler, Bounded-rank tensors are defined in bounded degree, Duke Mathematical Journal, 163 (2014), 35-63.       
12 J. D. Hauenstein and A. J. Sommese, Witness sets of projections, Applied Mathematics and Computation, Elsevier, 217 (2010), 3349-3354.       
13 J. D. Hauenstein and A. J. Sommese, Membership tests for images of algebraic sets by linear projections, Applied Mathematics and Computation, Elsevier, 219 (2013), 6809-6818.       
14 R. Ke, W. Li and M. Xiao, Characterization of extreme points of multi-stochastic tensors, Computational Methods in Applied Mathematics, 16 (2016), 459-474.       
15 T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500.       
16 J. M. Landsberg, Tensors: Geometry and Applications, AMS, Providence, Rhode Island, USA, 2012.       
17 M. W. Mahoney, L.-H. Lim and G. E. Carlsson, Algorithmic and statistical challenges in modern largescale data analysis are the focus of MMDS 2008, ACM SIGKDD Explorations Newsletter, 10 (2008), 57-60.
18 F. Malgouyres and J. Landsberg, Stable recovery of the factors from a deep matrix product and application to convolutional network, preprint, arXiv:1703.08044.
19 Y. Matsushima (E. Kobayashi, translator), Differentiable Manifolds, Marcel Dekker, Inc., North-Holland Publishing Co., North Miami Beach, FL, U.S.A., 1972.       
20 E. E. Papalexakis, C. Faloutsos and N. D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Transactions on Intelligent Systems and Technology (TIST), 8 (2017), 1-44.

Go to top