Big Data and Information Analytics (BDIA)

MatrixMap: Programming abstraction and implementation of matrix computation for big data analytics
Pages: 349 - 376, Issue 4, October 2016

doi:10.3934/bdia.2016015      Abstract        References        Full text (690.1K)           Related Articles

Yaguang Huangfu - Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China (email)
Guanqing Liang - Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China (email)
Jiannong Cao - Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China (email)

1 C.-C. Chang and Chih-Jen, libsvm dataset url: http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary/news20.binary.bz2, 2015.
2 J. Choi, J. J. Dongarra, R. Pozo and D. W. Walker, ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers, in Frontiers of Massively Parallel Computation, 1992., Fourth Symposium on the, IEEE, (1992), 120-127.
3 Chu, Cheng-Tao and Kim, Sang Kyun and Lin, Yi-An and Yu, YuanYuan and Bradski, Gary and Ng, Andrew Y and Olukotun, Kunle, Map-Reduce for Machine Learning on Multicore, in Neural Information Processing Systems, 2007.
4 M. T. Chu and J. L. Watterson, On a multivariate eigenvalue problem, Part I: Algebraic theory and a power method, SIAM Journal on Scientific Computing, 14 (1993), 1089-1106.       
5 T. H. Cormen, Introduction to Algorithms, MIT press, 2009.       
6 J. Dean and S. Ghemawat, MapReduce: simplified data processing on large clusters, Communications of the ACM, 51 (2008), 107-113.
7 J. Ekanayake, H. Li and B. Zhang, Twister: A runtime for iterative MapReduce, in HPDC '10 Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, (2010), 810-818.
8 J. Gonzalez, Y. Low, H. Gu, D. Bickson and C. Guestrin, PowerGraph: Distributed graph-parallel computation on natural graphs, in OSDI'12 Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation, (2012), 17-30.
9 P. Harrington, Machine Learning in Action, Manning Publications, 2012.
10 P. Hintjens, ZeroMQ: Messaging for Many Applications, O'Reilly Media, Inc., 2013.
11 Intel, Threading Building Blocks url: https://www.threadingbuildingblocks.org/, 2009.
12 M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly, Dryad: distributed data-parallel programs from sequential building blocks, ACM SIGOPS Operating Systems Review, 41 (2007), 59-72.
13 Join (SQL) url: https://en.wikipedia.org/wiki/Join, 2015.
14 J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear Algebra, SIAM, 2011.
15 K. Kourtis, V. Karakasis, G. Goumas and N. Koziris, CSX: An extended compression format for spmv on shared memory systems, in ACM SIGPLAN Notices, 46 (2011), 247-256.
16 J. Kowalik, ACTORS: A model of concurrent computation in distributed systems (Gul Agha), SIAM Review, 30 (1988), 146-146.
17 C. G. Aapo Kyrola and G. Blelloch, GraphChi: Large-scale graph computation on just a PC, in Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation, USENIX Association, (2012), 31-46.
18 Y. Low, J. Gonzalez and A. Kyrola, Graphlab: A distributed framework for machine learning in the cloud, arXiv preprint, arXiv:1107.0922, 1107 (2011).
19 Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin and J. M. Hellerstein, Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud, in Proceedings of the VLDB Endowment, 5 (2012), 716-727.
20 G. Malewicz, M. Austern and A. Bik, Pregel: A system for large-scale graph processing, Proceedings of the the 2010 international conference on Management of data, 114 (2010), 135-145.
21 D. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham and M. Abadi, Naiad: A timely dataflow system, in SOSP '13: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, (2013), 439-455.
22 E. J. O'Neil, P. E. O'Neil and G. Weikum, The LRU-K page replacement algorithm for database disk buffering, in ACM SIGMOD Record, 22 (1993), 297-306.
23 T. W. L Page, S Brin, R Motwani, The PageRank Citation Ranking: Bringing Order to the Web, tech. rep., Stanford InfoLab, 1999.
24 R. Power and J. Li, Piccolo: Building fast, distributed programs with partitioned tables, Proceedings of the 9th USENIX conference on Operating systems design and implementation - OSDI'10, (2010), 1-14.
25 J. Protic, M. Tomasevic and V. Milutinović, Distributed Shared Memory: Concepts and Systems, John Wiley & Sons, 1998.
26 Z. Qian, X. Chen, N. Kang and M. Chen, MadLINQ: large-scale distributed matrix computation for the cloud, Proceedings of the 7th ACM european conference on Computer Systems. ACM, (2012), 197-210,.
27 RocksDB, http://rocksdb.org/, 2015.
28 A. Roy, I. Mihailovic and W. Zwaenepoel, X-stream: edge-centric graph processing using streaming partitions, in the Twenty-Fourth ACM Symposium on Operating Systems Principles, (2013), 472-488.
29 S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim and S. Maeng, HAMA: An efficient matrix computation with the mapreduce framework, in 2010 IEEE Second International Conference on Cloud Computing Technology and Science, (2010), 721-726.
30 J. Shun and G. Blelloch, Ligra: A lightweight graph processing framework for shared memory, in PPoPP, (2013), 135-146.
31 M. S. Snir, S. W. Otto, D. W. Walker, J. Dongarra and Huss-Lederman, MPI: The Complete Reference, MIT Press, 1995.
32 L. Valiant, A bridging model for parallel computation, Communications of the ACM, 33 (1990), 103-111.
33 P. Vassiliadis, A survey of extract-transform-load technology, International Journal of Data Warehousing and Mining, 5, 1-27.
34 S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber, Presto, in Proceedings of the 8th ACM European Conference on Computer Systems - EuroSys '13, (2013), p197.
35 R. S. Xin, J. E. Gonzalez, M. J. Franklin, I. Stoica, and E. AMPLab, GraphX: A Resilient Distributed Graph System on Spark, in First International Workshop on Graph Data Management Experiences and Systems, p. 2, 2013.
36 M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, Spark: Cluster computing with working sets, HotCloud'10 Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, (2010), p10.
37 M. Zaharia, M. Chowdhury, T. Das and A. Dave, Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, tech. rep., UCB/EECS-2011-82 UC Berkerly, 2012.
38 T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent algorithms, in Proceedings of the twenty-first international conference on Machine learning, ACM, (2004), p116.
39 Y. Zhou, D. Wilkinson, R. Schreiber and R. Pan, Large-scale parallel collaborative filtering for the netflix prize, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, 5034 (2008), 337-348.

Go to top