`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system
Pages: 4489 - 4505, Issue 8, August 2017

doi:10.3934/dcds.2017192      Abstract        References        Full text (453.1K)           Related Articles

Rui Peng - School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China (email)
Xianfa Song - Department of Mathematics, School of Mathematics, Tianjin University, Tianjin 300072, China (email)
Lei Wei - School of Mathematical and Statistics, Jiangsu Normal University, Xuzhou 221116, China (email)

1 S. Chen, Y. Salmaniw and R. Xu, Global existence for a singular Gierer-Meinhardt system, J. Differential Equations, 262 (2017), 2940-2960.       
2 S. Chen, Steady state solutions for a general activator-inhibitor model, Nonlinear Anal., 135 (2016), 84-96.       
3 Y. S. Choi and P. J. McKenna, A singular Gierer-Meinhardt system of elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 503-522.       
4 Y. S. Choi and P. J. McKenna, A singular Gierer-Meinhardt system of elliptic equations: The classical case, Nonlinear Anal., 55 (2003), 521-541.       
5 M. Ghergu, Steady-state solutions for Gierer-Meinhardt type systems with Dirichlet boundary condition, Trans. Amer. Math. Soc., 361 (2009), 3953-3976.       
6 M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318.       
7 M. Ghergu and V. Rădulescu, On a class of sublinear singular elliptic problems with convection term, J. Math. Anal. Appl., 311 (2005), 635-646.       
8 M. Ghergu and V. Rădulescu, On a class of singular Gierer-Meinhardt systems arising in morphogenesis, C. R. Math. Acad. Sci. Paris, 344 (2007), 163-168.       
9 M. Ghergu and V. Rădulescu, A singular Gierer-Meinhardt system with different source terms, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 1215-1234.       
10 M. Ghergu and V. Rădulescu, The influence of the distance function in some singular elliptic problems, Potential theory and stochastics in Albac, 125-137, Theta Ser. Adv. Math., 11, Theta, Bucharest, 2009.       
11 M. Ghergu and V. Rădulescu, Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics, With a foreword by Viorel Barbu. Springer Monographs in Mathematics. Springer, Heidelberg, 2012. xviii+391 pp. ISBN: 978-3-642-22663-2.       
12 A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
13 H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn. Syst., 14 (2006), 737-751.       
14 H. Jiang and W.-M. Ni, A priori estimates of stationary solutions of an activator-inhibitor system, Indiana Univ. Math. J., 56 (2007), 681-732.       
15 E. H. Kim, Singular Gierer-Meinhardt systems of elliptic boundary value problems, J. Math. Anal. Appl., 308 (2005), 1-10.       
16 E. H. Kim, A class of singular Gierer-Meinhardt systems of elliptic boundary value problems, Nonlinear Anal., 59 (2004), 305-318.       
17 A. Lazer and J. P. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.       
18 F. Li, R. Peng and X. F. Song, Global existence and finite time blow-up of solutions of a Gierer-Meinhardt system, J. Differential Equations, 262 (2017), 559-589.       
19 W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.       
20 W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conf. Ser. in Appl. Math. 82, SIAM, Philadelphia, 2011.       
21 W.-M. Ni, K. Suzuki and I. Takagi, The dynamics of a kynetics activator-inhibitor system, J. Differential Equations, 229 (2006), 426-465.       
22 W.-M. Ni, I. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activator-inhibitor model, Japan J. Indust. Appl. Math., 18 (2001), 259-272.       
23 W.-M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type, Trans. Amer. Math. Soc., 297 (1986), 351-368.       
24 W.-M. Ni and I. Takagi, Point condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Indust. Appl. Math., 12 (1995), 327-365.       
25 W.-M. Ni and J. Wei, On positive solutions concentrating on spheres for the Gierer-Meinhardt system, J. Differential Equations, 221 (2006), 158-189.       
26 C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.       
27 V. Rădulescu, Bifurcation and asymptotics for elliptic problems with singular nonlinearity. Elliptic and Parabolic Problems, 389-401, Progr. Nonlinear Differential Equations Appl., 63, Birkhäuser, Basel, 2005.       
28 A. Trembley, M'emoires pour servir à l'histoire dun genre de polype d'eau douce, à bras en forme de corne, Verbeek, Leiden, Netherland, 1744.
29 A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society (B), 237 (1952), 37-72.       
30 J. C. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, 189. Springer, London, 2014. xii+319 pp. ISBN: 978-1-4471-5525-6; 978-1-4471-5526-3.       
31 Q. X. Ye, Z. Y. Li, M. X. Wang and Y. P. Wu, Introduction to Reaction-Diffusion Equations, Second Edition, Science Press, Beijing, 2011 (in Chinese).
32 Y. Zhang, Positive solutions of singular sublinear Dirichlet boundary value problems, SIAM J. Math. Anal., 26 (1995), 329-339.       

Go to top