`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

Existence of heterodimensional cycles near Shilnikov loops in systems with a $\mathbb{Z}_2$ symmetry
Pages: 4399 - 4437, Issue 8, August 2017

doi:10.3934/dcds.2017189      Abstract        References        Full text (796.5K)           Related Articles

Dongchen Li - Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom (email)
Dmitry V. Turaev - Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom (email)

1 V. S. Afraimovich, V. V. Bykov and L. P. Shilnikov, On the origin and structure of the Lorenz attractor, Akademiia Nauk SSSR Doklady, 234 (1977), 336-339.       
2 V. S. Afraimovich, V. V. Bykov and L. P. Shilnikov, On the structurally unstable attracting limit sets of Lorenz attractor type, Tran. Moscow Math. Soc., 2 (1983), 153-215.
3 D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, (Russian)Trudy Mat. Inst. Steklov., 90 (1967), 209pp.       
4 R. Barrio, A. L. Shilnikov and L. P. Shilnikov, Kneadings, symbolic dynamics and painting Lorenz chaos, International Journal of Bifurcation and Chaos, 22 (2008), 1230016, 24 pp.       
5 C. Bonatti and S. Crovisier, Center manifolds for partially hyperbolic sets without strong unstable connections, Journal of the Institute of Mathematics of Jussieu, 15 (2016), 785-828.       
6 C. Bonatti and L. J. Díaz, Persistent transitive diffeomorphisms, Annals of Mathematics, 143 (1996), 357-396.       
7 C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and $C^1$-generic dynamics, Journal of the Institute of Mathematics of Jussieu, 7 (2008), 469-525.       
8 C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, III. Springer-Verlag, Berlin, 2005.       
9 L. J. Díaz and J. Rocha, Non-connected heterodimensional cycles: Bifurcation and stability, Nonlinearity, 5 (1992), 1315-1341.       
10 L. J. Díaz, Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic Theory and Dynamical Systems, 15 (1995), 291-315.       
11 L. J. Díaz, Persistence of cycles and nonhyperbolic dynamics at the unfolding of heteroclinic bifurcations, Ergodic Theory and Dynamical Systems, 8 (1995), 693-713.       
12 J. W. Evans, N. Fenichel and J. A. Feroe, Double impulse solutions in nerve axon equations, SIAM J. Appl. Math., 42 (1982), 219-234.       
13 J. A. Feroe, Homoclinic orbits in a parametrized saddle-focus system, Phys. D, 62 (1993), 254-262.       
14 P. Gaspard, Generation of a countable set of homoclinic flows through bifurcation, Physics Letters A, 97 (1983), 1-4.       
15 S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov, On the existence of Newhouse regions in a neighbourhood of systems with a structurally unstable homoclinic Poincaré curve (the multidimensional case), Dokl. Akad. Nauk, 47 (1993), 268-273.       
16 S. V. Gonchenko, L. P. Shilnikov and D. V. Turaev, On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors, Reg. Chaot. Dyn., 14 (2009), 137-147.       
17 S. V. Gonchenko, D. V. Turaev, P. Gaspard and G. Nicolis, Complexity in the bifurcation structure of homoclinic loops to a saddle-focus, Nonlinearity, 10 (1997), 409-423.       
18 M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Springer-Lecture Notes on Mathematics, 583, Heidelberg, 1977.       
19 A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbook of Dynamical Systems, Elsevier, 3 (2010), 379-524.
20 M. Hurley, Attractors: Persistence and density of their basins, Trans. Amer. Math. Soc., 269 (1982), 247-271.       
21 D. Li, Homoclinic bifurcations that give rise to heterodimensional cycles near a Saddle-focus equilibrium, Nonlinearity, 30 (2017), 173-206.       
22 S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math, 50 (1979), 101-151.       
23 S. E. Newhouse and J. Palis, Cycles and bifurcation theory, Asterisque, 31 (1976), 43-140.       
24 I. M. Ovsyannikov and L. P. Shilnikov, On systems with a saddle-focus homoclinic curve, Math. USSR Sbornik, 58 (1987), 557-574.
25 I. M. Ovsyannikov and L. P. Shilnikov, Systems with a homoclinic curve of multidimensional saddle-focus type, and spiral chaos, Math. USSR Sbornik, 73 (1992), 415-443.       
26 J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math, 140 (1994), 207-250.       
27 J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, 261 (2000), 335-347.       
28 D. Ruelle, Small random perturbations of dynamical systems and the definition of attractors, Comm. Math. Phys., 82 (1981), 137-151.       
29 M. V. Shashkov and D. V. Turaev, An existence theorem of smooth nonlocal center manifolds for systems close to a system with a homoclinic loop, J. Nonlinear Sci., 9 (1999), 525-573.       
30 L. P. Shilnikov, A case of the existence of a countable number of periodic motions (Point mapping proof of existence theorem showing neighbourhood of trajectory which departs from and returns to saddle-point focus contains denumerable set of periodic motions), (Russian) Dokl. Akad. Nauk SSSR, 160 (1965), 558-561.       
31 L. P. Shilnikov, A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type, Math. USSR Sbornik, 10 (1970), 91-102.
32 L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods Of Qualitative Theory In Nonlinear Dynamics (Part I), $2^{nd}$ World Sci.-Singapore, New Jersey, London, Hong Kong, 2001.       
33 L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods Of Qualitative Theory In Nonlinear Dynamics (Part II), $2^{nd}$ World Sci.-Singapore, New Jersey, London, Hong Kong, 2001.       
34 W. Tucker, A rigorous ODE solver and Smale's 14th problem, Foundations of Computational Mathematics, 2 (2002), 53-117.       
35 D. V. Turaev, On dimension of non-local bifurcational problems, International Journal of Bifurcation and Chaos, 6 (1996), 919-948.       
36 D. V. Turaev and L. P. Shilnikov, An example of a wild strange attractor, Math. USSR Sbornik, 189 (1998), 291-314.       

Go to top