Discrete and Continuous Dynamical Systems - Series A (DCDS-A)

Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one
Pages: 4309 - 4328, Issue 8, August 2017

doi:10.3934/dcds.2017184      Abstract        References        Full text (460.1K)           Related Articles

Daniele Garrisi - West Building, Oce No. 5W443, Department of Mathematics Education, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon, 402-751, South Korea (email)
Vladimir Georgiev - Dipartimento di Matematica, Largo Bruno Pontecorvo n. 5, 56127, Pisa (PI), Italy (email)

1 A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, vol. 34 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1993, Corrected reprint of the 1993 original.       
2 J. Bellazzini, V. Benci, M. Ghimenti and A. M. Micheletti, On the existence of the fundamental eigenvalue of an elliptic problem in $\mathbbR^N$, Adv. Nonlinear Stud., 7 (2007), 439-458.       
3 J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.       
4 V. Benci and D. Fortunato, Hylomorphic solitons and charged Q-balls: Existence and stability, Chaos Solitons Fractals, 58 (2014), 1-15.       
5 H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.       
6 H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.       
7 T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1103921547.       
8 T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003.       
9 J. Dávila, M. del Pino and I. Guerra, Non-uniqueness of positive ground states of non-linear Schrödinger equations, Proc. Lond. Math. Soc. (3), 106 (2013), 318-344.       
10 D. Garrisi, On the orbital stability of standing-waves solutions to a coupled non-linear Klein-Gordon equation, Adv. Nonlinear Stud., 12 (2012), 639-658.       
11 M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.       
12 E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.       
13 P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145, URL http://www.numdam.org/item?id=AIHPC_1984__1_2_109_0.       
14 J. Shatah and W. Strauss, Instability of nonlinear bound states, Comm. Math. Phys., 100 (1985), 173-190, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1103943442.
15 M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscripta Math., 143 (2014), 221-237.       
16 X. Song, Stability and instability of standing waves to a system of Schrödinger equations with combined power-type nonlinearities, J. Math. Anal. Appl., 366 (2010), 345-359.       
17 T. Tao, M. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.       
18 M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.       
19 M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.       

Go to top