`a`
Discrete and Continuous Dynamical Systems - Series A (DCDS-A)
 

On nonlocal symmetries generated by recursion operators: Second-order evolution equations
Pages: 4239 - 4247, Issue 8, August 2017

doi:10.3934/dcds.2017181      Abstract        References        Full text (287.4K)           Related Articles

M. Euler - Division of Mathematics, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden (email)
N. Euler - Division of Mathematics, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden (email)
M. C. Nucci - Dipartimento di Matematica e Informatica, Università di Perugia, 06123, Perugia, Italy (email)

1 S. C. Anco and G. Bluman, Direct construction method for conservation laws of PDEs Part II: General treatment, Euro. J. Applied Mathematics, 13 (2002), 567-585.       
2 M. Euler and N. Euler, Second-order recursion operators of third-order evolution equations with fourth-order integrating factors, J. Nonlinear Math. Phys., 14 (2007), 313-315.       
3 N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies, J. Nonlinear Math. Phys., 16 (2009), 489-504.       
4 M. Euler, N. Euler and N. Petersson, Linearisable hierarchies of evolution equations in (1+1) dimensions, Stud. Appl. Math., 111 (2003), 315-337.       
5 A. S. Fokas, Symmetries and Integrability, Stud. Appl. Math. 77 (1987), 253-299.       
6 P. J. Olver, Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18 (1977), 1212-1215.       
7 P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.       
8 N. Petersson, N. Euler and M. Euler, Recursion Operators for a Class of Integrable Third-Order Evolution Equations, Stud. Appl. Math., 112 (2004), 201-225.       

Go to top