`a`
Journal of Dynamics and Games (JDG)
 

On Zermelo's theorem
Pages: 191 - 194, Issue 3, July 2017

doi:10.3934/jdg.2017011      Abstract        References        Full text (245.7K)           Related Articles

Rabah Amir - Department of Economics, University of Iowa, Iowa City, IA 52242-1994, United States (email)
Igor V. Evstigneev - Department of Economics, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom (email)

1 R. Amir, I. V. Evstigneev and K. R. Schenk-Hoppé, Asset market games of survival: A synthesis of evolutionary and dynamic games, Annals of Finance, 9 (2013), 121-144.       
2 R. J. Aumann, Lectures on Game Theory, Westview, Boulder, 1989.
3 E. Borel, La théorie du jeu et les équations intégrales à noyau symétrique, Comptes Rendus de l'Académie des Sciences, 173 (1921), 1304-1308. English translation: The theory of play and integral equations with skew symmetric kernels,Econometrica, 21 (1953), 97-100.       
4 C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Mathematics, 3 (1901/02), 35-39.       
5 A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.       
6 Yu. Khomskii, Intensive Course on Infinite Games, Sofia University, 2010. Available from: https://www.math.uni-hamburg.de/home/khomskii/infinitegames2010/Infinite Games Sofia.pdf.
7 F. Kojima, Stability and instability of the unbeatable strategy in dynamic processes, International Journal of Economic Theory, 2 (2006), 41-53.
8 U. Schwalbe and P. Walker, Zermelo and the early history of game theory, Games and Economic Behavior, 34 (2001), 123-137.       
9 E. Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in Proceedings of the Fifth International Congress of Mathematicians (Cambridge 1912), (eds. E.W. Hobson and A.E.H. Love), Cambridge University Press, Cambridge, 2 (1913), 501-504.

Go to top