`a`
Journal of Industrial and Management Optimization (JIMO)
 

The optimal cash holding models for stochastic cash management of continuous time
Page number are going to be assigned later 2017

doi:10.3934/jimo.2017034      Abstract        References        Full text (483.2K)      

Zhengyan Wang - Dept. of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Guanghua Xu - Dept. of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Peibiao Zhao - Dept. of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China (email)
Zudi Lu - Southampton Statistical Sciences Research Institute, and School of Mathematical Sciences, University of Southampton, SO17 1BJ, United Kingdom (email)

1 S. Baccarin, Optimal impulse control for cash management with quadratic holding-penalty costs, Decis. Econ. Finance, 25 (2002), 19-32.       
2 A. Bar-Ilan, Overdraft and the demand for money, Am. Econ. Rev., 80 (1990), 1201-1216.
3 A. Bar-Ilan, D. Perry and W. Stadje, A generalized impulse control model of cash management, J. Econ. Dyn. Control, 28 (2004), 1013-1033.       
4 A. Bar-Ilan and D. Lederman, International reserves and monetary policy, Econ. Lett., 97 (2007), 170-178.       
5 W. Baumol, The transaction demand for cash - an inventory theoretic approach, Q. J. Econ., 66 (1952), 545-546.
6 A. Ben-Bassat and D. Gottlieb, Optimal international reserves and sovereign risk, J. Int. Econ., 33 (1992), 345-362.
7 A. Bensoussan, A. Chutani and S. P. Sethi, Optimal cash managementunder uncertainty, Operations Research Letters, 37 (2009), 425-429.       
8 F. Chang, Homogeneity and the transactions demand for money, J. Money Credit Bank., 31 (1999), 720-730.
9 H. G. Daellenbach, A stochastic cash balance model with two sources of short-term funds, Int. Econ. Rev., 12 (1971), 250-256.
10 H. G. Daellenbach, Daellenbach, H.G. Are cash management optimization models worthwhile?, J. Financ. Quant. Anal., 9 (1974), 607-626.
11 A. Dixit, A simplied exposition of the theory of optimal control of Brownian motion, J. Econ. Dyn. Control, 15 (1991), 657-673.       
12 G. D. Eppen and E. Fama, Cash balance and simple dynamic portfolio problems with proportional costs, Int. Econ. Rev., 10 (1969), 119-133.
13 W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Berlin, New York, 2006.       
14 J. Frenkel and B. Jovanovic, On transactions and precautionary demand for money, Q. J. Econ., 94 (1980), 24-43.
15 J. Frenkel and B. Jovanovic, Optimal international reserves: A stochastic framework, Econ. J., 91 (1981), 507-514.
16 N. Girgis, Optimal cash balance levels, Manage. Sci., 15 (1968), 130-140.
17 W. H. Hausman and A. Sanchez-Bell, The stochastic cash balance problem with average compensating-balance requirements, Manage. Sci., 21 (1975), 849-857.
18 I. Karatzas, J. P. Lehoczky, S. E. Shreve and G. L. Xu, Martingale and duality for utility maximization in an incomplete market, SIAM J. Control and Optimization, 29 (1991), 702-730.       
19 M. A. S. Melo and F. Bilich, Expectancy balance model for cash flow, Journal of Economics and Finance, 37 (2013), 240-252.
20 R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous time case, Review of Economics and Statistics, 51 (1969), 247-257.
21 R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.       
22 R. Milbourne, Optimal money holding under uncertainty, Int. Econ. Rev., 24 (1983), 685-698.
23 M. Miller and D. Orr, A model of the demand for money by firms, Q. J. Econ., 81 (1966), 413-435.
24 M. B. C. Moraes and M. S. Nagano, Cash management policies by evolutionary models: A comparison using the Miller-Orr model, JISTEM, 10 (2013), 561-576.
25 D. Perry and W. Stadje, Risk analysis for a stochastic cash management model with two types of customers, Insur. Math. Econ., 26 (2000), 25-36.       
26 G. W. Smith, Transactions demand for money with a stochastic, time-varying interest rate, Rev. Econ. Stud., 56 (1989), 623-633.
27 N. Song, W. K. Ching, T. K. Siu and K. F. Yiu, On optimal cash management under a stochastic volatility model, East Asian Journal on Applied Mathematics, 3 (2013), 81-92.       
28 J. Tobin, The interest elasticity of the transaction demand for cash, Rev. Econ. Stat., 38 (1956), 241-247.
29 R. G. Vickson, Simple optimal policy for cash management: The average balance requirement case, J. Financ. Quant. Anal., 20 (1985), 353-369.

Go to top