`a`
Journal of Industrial and Management Optimization (JIMO)
 

Prox-dual regularization algorithm for generalized fractional programs
Pages: 1991 - 2013, Issue 4, October 2017

doi:10.3934/jimo.2017028      Abstract        References        Full text (429.8K)           Related Articles

Mostafa El Haffari - Laboratoire MISI, Faculté des Sciences et Techniques, Univ. Hassan 1, 26000 Settat, Morocco (email)
Ahmed Roubi - Laboratoire MISI, Faculté des Sciences et Techniques, Univ. Hassan 1, 26000 Settat, Morocco (email)

1 A. Addou and A. Roubi, Proximal-type methods with generalized bregman functions and applications to generalized fractional programming, Optimization, 59 (2010), 1085-1105.       
2 A. I. Barros, and J. B. G. Frenk, S. Schaible and S. Zhang, A new algorithm for generalized fractional programs, Mathematical Programming, 72 (1996), 147-175.       
3 A. I. Barros, and J. B. G. Frenk, S. Schaible and S. Zhang, Using duality to solve generalized fractional programming problems, Journal of Global Optimization, 8 (1996), 139-170.
4 J. C. Bernard and J. A. Ferland, Convergence of interval-type algorithms for generalized fractional programming, Mathematical Programming, 43 (1989), 349-363.       
5 J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming, SIAM Journal on Control and Optimization, 31 (1993), 1340-1359.       
6 J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Mathematical Programming, 27 (1983), 342-354.       
7 J. P. Crouzeix, J. A. Ferland and S. Schaible, An algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 47 (1985), 35-49.       
8 J. P. Crouzeix, J. A. Ferland and S. Schaible, A note on an algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 50 (1986), 183-187.
9 J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191-207.       
10 W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), 492-498.
11 I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Gauthier-Villars, Paris, Bruxelles, Montréal, 1976.       
12 J. B. G. Frenk and S. Schaible, Fractional Programming, in ERIM Report Series, (Reference No. ERS-2004-074-LIS) (2004).
13 M. Gugat, Prox-regularization methods for generalized fractional programming, Journal of Optimization Theory and Applications, 99 (1998), 691-722.
14 O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, 29 (1991), 403-419.
15 J.-Y. Lin, H.-J. Chen and R.-L. Sheu, Augmented lagrange primal-dual approach for generalized fractional programming problems, Journal of Industrial and Management Optimization, 4 (2013), 723-741.
16 A. Nagih and G. Plateau, Problèmes fractionnaires: Tour d'horizon sur les applications et méthodes de résolution, RAIRO Oper. Res., 33 (1999), 383-419.
17 R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N. J., 1970.       
18 A. Roubi, Method of centers for generalized fractional programming, Journal of Optimization Theory and Applications, 107 (2000), 123-143.
19 A. Roubi, Convergence of prox-regularization methods for generalized fractional programming, RAIRO Oper. Res., 36 (2002), 73-94.       
20 S. Schaible, Fractional Programming, in Handbook Global Optimization (eds. R. Horst and P. M. Pardalos), Kluwer, Dordrecht, (1995), 495-608.
21 M. Sion, On General minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.       
22 J. J. Strodiot, J. P. Crouzeix and J. A. Ferland and V. H. Nguyen, An inexact proximal point method for solving generalized fractional programs, Journal of Global Optimization, 42 (2008), 121-138.

Go to top