`a`
Journal of Computational Dynamics (JCD)
 

Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation
Pages: 191 - 210, Issue 2, December 2016

doi:10.3934/jcd.2016010      Abstract        References        Full text (593.1K)           Related Articles

Peter Giesl - Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom (email)
James McMichen - Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom (email)

1 D. Angeli, A Lyapunov approach to incremental stability properties, IEEE Trans. Automat. Contr., 47 (2002), 410-421.       
2 E. Aylward, P. Parrilo and J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming, Automatica, 44 (2008), 2163-2170.
3 V. Boichenko, G. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations, volume 141 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 2005.       
4 G. Borg, A Condition for the Existence of Orbitally Stable Solutions of Dynamical Systems, Kungliga Tekniska Högskolan Handlingar Stockholm 153, 1960.
5 M. Buhmann, Radial Basis Functions: Theory and Implementations, volume 12 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2003.       
6 F. Forni and R. Sepulchre, A differential Lyapunov framework for Contraction Analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.       
7 P. Giesl, Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.       
8 P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, volume 1904 of Lecture Notes in Mathematics. Springer, Berlin, 2007.       
9 P. Giesl, On the determination of the basin of attraction of a periodic orbit in two-dimensional systems, Journal of Mathematical Analysis and Applications, 335 (2007), 461-479.       
10 P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems, J. Math. Anal. Appl., 354 (2009), 606-618.       
11 P. Giesl and S. Hafstein, Construction of a CPA contraction metric for periodic orbits using semidefinite optimization, Nonlinear Anal., 86 (2013), 114-134.       
12 P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.       
13 P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to dynamical systems, SIAM J. Numer. Anal., 45 (2007), 1723-1741.       
14 P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.       
15 P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.       
16 A. Iske, Perfect Centre Placement for Radial Basis Function Methods, Technical report, Technical report TUM M9809, 1999.
17 G. Leonov, I. Burkin and A. Shepelyavyi, Frequency Methods in Oscillation Theory, Ser. Math. and its Appl., Vol. 357, Kluwer, 1996.       
18 D. Lewis, Metric properties of differential equations, Amer. J. Math., 71 (1949), 294-312.       
19 W. Lohmiller and J.-J. Slotine, On contraction analysis for non-linear systems, Automatica, 34 (1998), 683-696.       
20 I. Manchester and J.-J. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.       
21 J. McMichen, Determination of Areas and Basins of Attraction in Planar Dynamical Systems using Meshless Collocation, PhD thesis, University of Sussex, 2016.
22 B. Stenström, Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.       
23 H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, Journal of Approximation Theory, 93 (1998), 258-272.       
24 H. Wendland, Scattered Data Approximation, volume 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2005.       

Go to top